Statistical integral distinguisher with multi-structure and its application on AES-like ciphers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Tingting Cui, Huaifeng Chen, Sihem Mesnager, Ling Sun, Meiqin Wang

ABSTRACT

Integral attack is one of the most powerful tools in the field of symmetric ciphers. In order to reduce the time complexity of original integral one, Wang et al. firstly proposed a statistical integral distinguisher at FSE’16. However, they don’t consider the cases that there are several integral properties on output and multiple structures of data should be used at the same time. In terms of such cases, we put forward a new statistical integral distinguisher, which enables us to reduce the data complexity comparing to the traditional integral ones under multiple structures. As illustrations, we use it into the known-key distinguishers on AES-like ciphers including AES and the permutations of Whirlpool, PHOTON and Grøstl-256 hash functions based on the Gilbert’s work at ASIACRYPT’14. These new distinguishers are the best ones comparing with previous ones under known-key setting. Moreover, we propose a secret-key distinguisher on 5-round AES under chosen-ciphertext mode. Its data, time and memory complexities are 2114.32 chosen ciphertexts, 2110 encryptions and 233.32 blocks. This is the best integral distinguisher on AES with secret S-box under secret-key setting so far. More... »

PAGES

755-776

References to SciGraph publications

  • 2017. A New Structural-Differential Property of 5-Round AES in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2017
  • 2002. The Design of Rijndael, AES — The Advanced Encryption Standard in NONE
  • 1997. The block cipher Square in FAST SOFTWARE ENCRYPTION
  • 2002. Integral Cryptanalysis in FAST SOFTWARE ENCRYPTION
  • 2017. Statistical Integral Distinguisher with Multi-structure and Its Application on AES in INFORMATION SECURITY AND PRIVACY
  • 2016. Integrals Go Statistical: Cryptanalysis of Full Skipjack Variants in FAST SOFTWARE ENCRYPTION
  • 2010. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations in FAST SOFTWARE ENCRYPTION
  • 2015. Known-Key Distinguisher on Full PRESENT in ADVANCES IN CRYPTOLOGY -- CRYPTO 2015
  • 2011. The PHOTON Family of Lightweight Hash Functions in ADVANCES IN CRYPTOLOGY – CRYPTO 2011
  • 2007. Known-Key Distinguishers for Some Block Ciphers in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2007
  • 2012. Improved Rebound Attack on the Finalist Grøstl in FAST SOFTWARE ENCRYPTION
  • 2009. Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher in SELECTED AREAS IN CRYPTOGRAPHY
  • 2009. Distinguisher and Related-Key Attack on the Full AES-256 in ADVANCES IN CRYPTOLOGY - CRYPTO 2009
  • 2014. Multiple Limited-Birthday Distinguishers and Applications in SELECTED AREAS IN CRYPTOGRAPHY -- SAC 2013
  • 2009. Distinguishers for Ciphers and Known Key Attack against Rijndael with Large Blocks in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2009
  • 2009. Rebound Distinguishers: Results on the Full Whirlpool Compression Function in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2009
  • 2015. Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis in ADVANCES IN CRYPTOLOGY -- CRYPTO 2015
  • 2015-04. The Rebound Attack and Subspace Distinguishers: Application to Whirlpool in JOURNAL OF CRYPTOLOGY
  • 2014. A Simplified Representation of AES in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2014
  • 2016. New Insights on AES-Like SPN Ciphers in ADVANCES IN CRYPTOLOGY – CRYPTO 2016
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12095-018-0286-5

    DOI

    http://dx.doi.org/10.1007/s12095-018-0286-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101319377


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China", 
                "Nanyang Technological University, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Tingting", 
            "id": "sg:person.016450724453.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450724453.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong University", 
              "id": "https://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Huaifeng", 
            "id": "sg:person.014405532346.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405532346.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris 8 University", 
              "id": "https://www.grid.ac/institutes/grid.15878.33", 
              "name": [
                "Department of Mathematics, University of Paris VIII, Saint-Denis, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mesnager", 
            "givenName": "Sihem", 
            "id": "sg:person.011374316201.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374316201.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong University", 
              "id": "https://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Ling", 
            "id": "sg:person.012733555253.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733555253.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shandong University", 
              "id": "https://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Meiqin", 
            "id": "sg:person.015520456725.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520456725.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-13858-4_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003313281", 
              "https://doi.org/10.1007/978-3-642-13858-4_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13858-4_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003313281", 
              "https://doi.org/10.1007/978-3-642-13858-4_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76900-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004683177", 
              "https://doi.org/10.1007/978-3-540-76900-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76900-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004683177", 
              "https://doi.org/10.1007/978-3-540-76900-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45661-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009882418", 
              "https://doi.org/10.1007/3-540-45661-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02384-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015400560", 
              "https://doi.org/10.1007/978-3-642-02384-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02384-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015400560", 
              "https://doi.org/10.1007/978-3-642-02384-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03356-8_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016485222", 
              "https://doi.org/10.1007/978-3-642-03356-8_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22792-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016551572", 
              "https://doi.org/10.1007/978-3-642-22792-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22792-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016551572", 
              "https://doi.org/10.1007/978-3-642-22792-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0052343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018616072", 
              "https://doi.org/10.1007/bfb0052343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-47989-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024718366", 
              "https://doi.org/10.1007/978-3-662-47989-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-05445-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028766519", 
              "https://doi.org/10.1007/978-3-642-05445-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-05445-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028766519", 
              "https://doi.org/10.1007/978-3-642-05445-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-47989-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033909265", 
              "https://doi.org/10.1007/978-3-662-47989-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-45611-8_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035808391", 
              "https://doi.org/10.1007/978-3-662-45611-8_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-34047-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038127469", 
              "https://doi.org/10.1007/978-3-642-34047-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-52993-5_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039885472", 
              "https://doi.org/10.1007/978-3-662-52993-5_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-43414-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040701578", 
              "https://doi.org/10.1007/978-3-662-43414-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-013-9166-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041682800", 
              "https://doi.org/10.1007/s00145-013-9166-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-53018-4_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043301367", 
              "https://doi.org/10.1007/978-3-662-53018-4_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052093804", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093804", 
              "https://doi.org/10.1007/978-3-662-04722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093804", 
              "https://doi.org/10.1007/978-3-662-04722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10366-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052635964", 
              "https://doi.org/10.1007/978-3-642-10366-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10366-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052635964", 
              "https://doi.org/10.1007/978-3-642-10366-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-56614-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084776192", 
              "https://doi.org/10.1007/978-3-319-56614-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-60055-0_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085712278", 
              "https://doi.org/10.1007/978-3-319-60055-0_21"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Integral attack is one of the most powerful tools in the field of symmetric ciphers. In order to reduce the time complexity of original integral one, Wang et al. firstly proposed a statistical integral distinguisher at FSE\u201916. However, they don\u2019t consider the cases that there are several integral properties on output and multiple structures of data should be used at the same time. In terms of such cases, we put forward a new statistical integral distinguisher, which enables us to reduce the data complexity comparing to the traditional integral ones under multiple structures. As illustrations, we use it into the known-key distinguishers on AES-like ciphers including AES and the permutations of Whirlpool, PHOTON and Gr\u00f8stl-256 hash functions based on the Gilbert\u2019s work at ASIACRYPT\u201914. These new distinguishers are the best ones comparing with previous ones under known-key setting. Moreover, we propose a secret-key distinguisher on 5-round AES under chosen-ciphertext mode. Its data, time and memory complexities are 2114.32 chosen ciphertexts, 2110 encryptions and 233.32 blocks. This is the best integral distinguisher on AES with secret S-box under secret-key setting so far.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12095-018-0286-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136695", 
            "issn": [
              "1936-2447", 
              "1936-2455"
            ], 
            "name": "Cryptography and Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Statistical integral distinguisher with multi-structure and its application on AES-like ciphers", 
        "pagination": "755-776", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "353f804a88e4c6f78bb2f4c779bb55b55fb69284a9638da062e8ac3124f2c65a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12095-018-0286-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101319377"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12095-018-0286-5", 
          "https://app.dimensions.ai/details/publication/pub.1101319377"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77570_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12095-018-0286-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12095-018-0286-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12095-018-0286-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12095-018-0286-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12095-018-0286-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12095-018-0286-5 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N42bf1c848c4f413b8b267042164e50e7
    4 schema:citation sg:pub.10.1007/3-540-45661-9_9
    5 sg:pub.10.1007/978-3-319-56614-6_10
    6 sg:pub.10.1007/978-3-319-60055-0_21
    7 sg:pub.10.1007/978-3-540-76900-2_19
    8 sg:pub.10.1007/978-3-642-02384-2_5
    9 sg:pub.10.1007/978-3-642-03356-8_14
    10 sg:pub.10.1007/978-3-642-05445-7_2
    11 sg:pub.10.1007/978-3-642-10366-7_8
    12 sg:pub.10.1007/978-3-642-13858-4_21
    13 sg:pub.10.1007/978-3-642-22792-9_13
    14 sg:pub.10.1007/978-3-642-34047-5_7
    15 sg:pub.10.1007/978-3-662-04722-4
    16 sg:pub.10.1007/978-3-662-43414-7_27
    17 sg:pub.10.1007/978-3-662-45611-8_11
    18 sg:pub.10.1007/978-3-662-47989-6_22
    19 sg:pub.10.1007/978-3-662-47989-6_5
    20 sg:pub.10.1007/978-3-662-52993-5_20
    21 sg:pub.10.1007/978-3-662-53018-4_22
    22 sg:pub.10.1007/bfb0052343
    23 sg:pub.10.1007/s00145-013-9166-5
    24 https://app.dimensions.ai/details/publication/pub.1052093804
    25 schema:datePublished 2018-09
    26 schema:datePublishedReg 2018-09-01
    27 schema:description Integral attack is one of the most powerful tools in the field of symmetric ciphers. In order to reduce the time complexity of original integral one, Wang et al. firstly proposed a statistical integral distinguisher at FSE’16. However, they don’t consider the cases that there are several integral properties on output and multiple structures of data should be used at the same time. In terms of such cases, we put forward a new statistical integral distinguisher, which enables us to reduce the data complexity comparing to the traditional integral ones under multiple structures. As illustrations, we use it into the known-key distinguishers on AES-like ciphers including AES and the permutations of Whirlpool, PHOTON and Grøstl-256 hash functions based on the Gilbert’s work at ASIACRYPT’14. These new distinguishers are the best ones comparing with previous ones under known-key setting. Moreover, we propose a secret-key distinguisher on 5-round AES under chosen-ciphertext mode. Its data, time and memory complexities are 2114.32 chosen ciphertexts, 2110 encryptions and 233.32 blocks. This is the best integral distinguisher on AES with secret S-box under secret-key setting so far.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N0e179aa9fe56446197356a378de288ab
    32 Nfbac4be2b5f54c95a6a5165c18114aa5
    33 sg:journal.1136695
    34 schema:name Statistical integral distinguisher with multi-structure and its application on AES-like ciphers
    35 schema:pagination 755-776
    36 schema:productId N0a7e5f10bbca4a06b27dc9b08abe259f
    37 N608465b25383496abe0ff519da311cdf
    38 Nfc44391ea67642cbbeade2a5841ec6e1
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101319377
    40 https://doi.org/10.1007/s12095-018-0286-5
    41 schema:sdDatePublished 2019-04-11T10:50
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N6eabc733fa92498eb24b8d68e8125a55
    44 schema:url https://link.springer.com/10.1007%2Fs12095-018-0286-5
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N0a7e5f10bbca4a06b27dc9b08abe259f schema:name readcube_id
    49 schema:value 353f804a88e4c6f78bb2f4c779bb55b55fb69284a9638da062e8ac3124f2c65a
    50 rdf:type schema:PropertyValue
    51 N0e179aa9fe56446197356a378de288ab schema:volumeNumber 10
    52 rdf:type schema:PublicationVolume
    53 N0f7f9e102a2a41a99a21335837fa84f3 rdf:first sg:person.014405532346.42
    54 rdf:rest Nd683dca5d89e4d12ba3bca344835b490
    55 N42bf1c848c4f413b8b267042164e50e7 rdf:first sg:person.016450724453.76
    56 rdf:rest N0f7f9e102a2a41a99a21335837fa84f3
    57 N526f6658d3e94c76a66148513d0a3863 rdf:first sg:person.015520456725.72
    58 rdf:rest rdf:nil
    59 N608465b25383496abe0ff519da311cdf schema:name doi
    60 schema:value 10.1007/s12095-018-0286-5
    61 rdf:type schema:PropertyValue
    62 N6eabc733fa92498eb24b8d68e8125a55 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nc678af36d94346b89a56425501c8f909 rdf:first sg:person.012733555253.52
    65 rdf:rest N526f6658d3e94c76a66148513d0a3863
    66 Nd683dca5d89e4d12ba3bca344835b490 rdf:first sg:person.011374316201.45
    67 rdf:rest Nc678af36d94346b89a56425501c8f909
    68 Nfbac4be2b5f54c95a6a5165c18114aa5 schema:issueNumber 5
    69 rdf:type schema:PublicationIssue
    70 Nfc44391ea67642cbbeade2a5841ec6e1 schema:name dimensions_id
    71 schema:value pub.1101319377
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Statistics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1136695 schema:issn 1936-2447
    80 1936-2455
    81 schema:name Cryptography and Communications
    82 rdf:type schema:Periodical
    83 sg:person.011374316201.45 schema:affiliation https://www.grid.ac/institutes/grid.15878.33
    84 schema:familyName Mesnager
    85 schema:givenName Sihem
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374316201.45
    87 rdf:type schema:Person
    88 sg:person.012733555253.52 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
    89 schema:familyName Sun
    90 schema:givenName Ling
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733555253.52
    92 rdf:type schema:Person
    93 sg:person.014405532346.42 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
    94 schema:familyName Chen
    95 schema:givenName Huaifeng
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405532346.42
    97 rdf:type schema:Person
    98 sg:person.015520456725.72 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
    99 schema:familyName Wang
    100 schema:givenName Meiqin
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015520456725.72
    102 rdf:type schema:Person
    103 sg:person.016450724453.76 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    104 schema:familyName Cui
    105 schema:givenName Tingting
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450724453.76
    107 rdf:type schema:Person
    108 sg:pub.10.1007/3-540-45661-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009882418
    109 https://doi.org/10.1007/3-540-45661-9_9
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-319-56614-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084776192
    112 https://doi.org/10.1007/978-3-319-56614-6_10
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-319-60055-0_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085712278
    115 https://doi.org/10.1007/978-3-319-60055-0_21
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-540-76900-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004683177
    118 https://doi.org/10.1007/978-3-540-76900-2_19
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-642-02384-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015400560
    121 https://doi.org/10.1007/978-3-642-02384-2_5
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-642-03356-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485222
    124 https://doi.org/10.1007/978-3-642-03356-8_14
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-642-05445-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028766519
    127 https://doi.org/10.1007/978-3-642-05445-7_2
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-642-10366-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052635964
    130 https://doi.org/10.1007/978-3-642-10366-7_8
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-642-13858-4_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003313281
    133 https://doi.org/10.1007/978-3-642-13858-4_21
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-642-22792-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016551572
    136 https://doi.org/10.1007/978-3-642-22792-9_13
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-642-34047-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038127469
    139 https://doi.org/10.1007/978-3-642-34047-5_7
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-662-04722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052093804
    142 https://doi.org/10.1007/978-3-662-04722-4
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-662-43414-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040701578
    145 https://doi.org/10.1007/978-3-662-43414-7_27
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-662-45611-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035808391
    148 https://doi.org/10.1007/978-3-662-45611-8_11
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-662-47989-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033909265
    151 https://doi.org/10.1007/978-3-662-47989-6_22
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-662-47989-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024718366
    154 https://doi.org/10.1007/978-3-662-47989-6_5
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-662-52993-5_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039885472
    157 https://doi.org/10.1007/978-3-662-52993-5_20
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/978-3-662-53018-4_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043301367
    160 https://doi.org/10.1007/978-3-662-53018-4_22
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bfb0052343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616072
    163 https://doi.org/10.1007/bfb0052343
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00145-013-9166-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041682800
    166 https://doi.org/10.1007/s00145-013-9166-5
    167 rdf:type schema:CreativeWork
    168 https://app.dimensions.ai/details/publication/pub.1052093804 schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.15878.33 schema:alternateName Paris 8 University
    170 schema:name Department of Mathematics, University of Paris VIII, Saint-Denis, France
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
    173 schema:name Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China
    174 rdf:type schema:Organization
    175 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
    176 schema:name Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, 250100, Jinan, China
    177 Nanyang Technological University, Singapore, Singapore
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...