Design and analysis of small-state grain-like stream ciphers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-08

AUTHORS

Matthias Hamann, Matthias Krause, Willi Meier, Bin Zhang

ABSTRACT

Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers to the birthday bound. Very recently, a new field of research has emerged, which searches for so-called small-state stream ciphers that try to overcome this limitation. In this paper, existing designs and known analysis of small-state stream ciphers are revisited and new insights on distinguishers and key recovery are derived based on TMD tradeoff attacks. A particular result is the transfer of a generic distinguishing attack suggested in 2007 by Englund et al. to this new class of lightweight ciphers. Our analysis shows that the initial hope of achieving full security against TMD tradeoff attacks by continuously using the secret key has failed. In particular, we provide generic distinguishers for Plantlet and Fruit with complexity significantly smaller than that of exhaustive key search. However, by studying the assumptions underlying the applicability of these attacks, we are able to come up with a new design idea for small-state stream ciphers, which might allow to finally achieve full security against TMD tradeoff attacks. Another contribution of this paper is the first key recovery attack against the most recent version of Fruit. We show that there are at least 264 weak keys, each of which does not provide 80-bit security as promised by designers. More... »

PAGES

803-834

References to SciGraph publications

  • 2014-11-15. Lightweight Authentication Protocols on Ultra-Constrained RFIDs - Myths and Facts in RADIO FREQUENCY IDENTIFICATION: SECURITY AND PRIVACY ISSUES
  • 2006. Conditional Estimators: An Effective Attack on A5/1 in SELECTED AREAS IN CRYPTOGRAPHY
  • 2017-08-02. Degree Evaluation of NFSR-Based Cryptosystems in ADVANCES IN CRYPTOLOGY – CRYPTO 2017
  • 2000-10-27. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers in ADVANCES IN CRYPTOLOGY — ASIACRYPT 2000
  • 2009. Cube Attacks on Tweakable Black Box Polynomials in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009
  • 2016-04-28. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2016
  • 2008. Networked RFID Systems and Lightweight Cryptography, Raising Barriers to Product Counterfeiting in NONE
  • 2015-08-01. Cryptanalysis of Full Sprout in ADVANCES IN CRYPTOLOGY -- CRYPTO 2015
  • 1988. Fast Correlation Attacks on Stream Ciphers in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’88
  • 2008-01-01. The Grain Family of Stream Ciphers in NEW STREAM CIPHER DESIGNS
  • 2009. KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2009
  • 2015-11-28. Some Results on Sprout in PROGRESS IN CRYPTOLOGY -- INDOCRYPT 2015
  • 2017-08-02. Cube Attacks on Non-Blackbox Polynomials Based on Division Property in ADVANCES IN CRYPTOLOGY – CRYPTO 2017
  • 2015-04-14. Structural Evaluation by Generalized Integral Property in ADVANCES IN CRYPTOLOGY -- EUROCRYPT 2015
  • 2015-12-30. Another Tradeoff Attack on Sprout-Like Stream Ciphers in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2015
  • 2005. New Applications of Time Memory Data Tradeoffs in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2005
  • 2007-01-01. PRESENT: An Ultra-Lightweight Block Cipher in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2007
  • 2016. Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks in SELECTED AREAS IN CRYPTOGRAPHY – SAC 2015
  • 2001-12-20. Weaknesses in the Key Scheduling Algorithm of RC4 in SELECTED AREAS IN CRYPTOGRAPHY
  • 2015-08-12. On Lightweight Stream Ciphers with Shorter Internal States in FAST SOFTWARE ENCRYPTION
  • 2005. The Conditional Correlation Attack: A Practical Attack on Bluetooth Encryption in ADVANCES IN CRYPTOLOGY – CRYPTO 2005
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12095-017-0261-6

    DOI

    http://dx.doi.org/10.1007/s12095-017-0261-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092579418


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Theoretische Informatik, Universit\u00e4t Mannheim, 68131, Mannheim, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5601.2", 
              "name": [
                "Lehrstuhl f\u00fcr Theoretische Informatik, Universit\u00e4t Mannheim, 68131, Mannheim, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamann", 
            "givenName": "Matthias", 
            "id": "sg:person.07417550777.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417550777.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lehrstuhl f\u00fcr Theoretische Informatik, Universit\u00e4t Mannheim, 68131, Mannheim, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5601.2", 
              "name": [
                "Lehrstuhl f\u00fcr Theoretische Informatik, Universit\u00e4t Mannheim, 68131, Mannheim, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krause", 
            "givenName": "Matthias", 
            "id": "sg:person.014033162131.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033162131.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "FHNW, Windisch, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.410380.e", 
              "name": [
                "FHNW, Windisch, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meier", 
            "givenName": "Willi", 
            "id": "sg:person.07653531142.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TCA, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458446.f", 
              "name": [
                "TCA, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Bin", 
            "id": "sg:person.014125113140.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125113140.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-04138-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049385172", 
              "https://doi.org/10.1007/978-3-642-04138-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-26617-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003776867", 
              "https://doi.org/10.1007/978-3-319-26617-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-48800-3_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001321237", 
              "https://doi.org/10.1007/978-3-662-48800-3_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01001-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052713322", 
              "https://doi.org/10.1007/978-3-642-01001-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11593447_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013909474", 
              "https://doi.org/10.1007/11593447_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11693383_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041777933", 
              "https://doi.org/10.1007/11693383_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11535218_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022105597", 
              "https://doi.org/10.1007/11535218_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44448-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020490931", 
              "https://doi.org/10.1007/3-540-44448-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-71641-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003452546", 
              "https://doi.org/10.1007/978-3-540-71641-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45537-x_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032737273", 
              "https://doi.org/10.1007/3-540-45537-x_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-47989-6_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023908343", 
              "https://doi.org/10.1007/978-3-662-47989-6_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68351-3_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027288622", 
              "https://doi.org/10.1007/978-3-540-68351-3_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-49890-3_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014166962", 
              "https://doi.org/10.1007/978-3-662-49890-3_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-63697-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091024677", 
              "https://doi.org/10.1007/978-3-319-63697-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-13066-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037827314", 
              "https://doi.org/10.1007/978-3-319-13066-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74735-2_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010365111", 
              "https://doi.org/10.1007/978-3-540-74735-2_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-63697-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091024676", 
              "https://doi.org/10.1007/978-3-319-63697-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-48116-5_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032917707", 
              "https://doi.org/10.1007/978-3-662-48116-5_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-31301-6_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035779896", 
              "https://doi.org/10.1007/978-3-319-31301-6_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-46800-5_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291591", 
              "https://doi.org/10.1007/978-3-662-46800-5_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45961-8_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029744006", 
              "https://doi.org/10.1007/3-540-45961-8_28"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-11-08", 
        "datePublishedReg": "2017-11-08", 
        "description": "Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers to the birthday bound. Very recently, a new field of research has emerged, which searches for so-called small-state stream ciphers that try to overcome this limitation. In this paper, existing designs and known analysis of small-state stream ciphers are revisited and new insights on distinguishers and key recovery are derived based on TMD tradeoff attacks. A particular result is the transfer of a generic distinguishing attack suggested in 2007 by Englund et al. to this new class of lightweight ciphers. Our analysis shows that the initial hope of achieving full security against TMD tradeoff attacks by continuously using the secret key has failed. In particular, we provide generic distinguishers for Plantlet and Fruit with complexity significantly smaller than that of exhaustive key search. However, by studying the assumptions underlying the applicability of these attacks, we are able to come up with a new design idea for small-state stream ciphers, which might allow to finally achieve full security against TMD tradeoff attacks. Another contribution of this paper is the first key recovery attack against the most recent version of Fruit. We show that there are at least 264 weak keys, each of which does not provide 80-bit security as promised by designers.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12095-017-0261-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136695", 
            "issn": [
              "1936-2447", 
              "1936-2455"
            ], 
            "name": "Cryptography and Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "tradeoff attacks", 
          "stream cipher", 
          "full security", 
          "first key recovery attacks", 
          "data tradeoff attacks", 
          "exhaustive key search", 
          "classical stream ciphers", 
          "key recovery attack", 
          "security level", 
          "lightweight ciphers", 
          "secret key", 
          "key search", 
          "key recovery", 
          "cipher", 
          "recovery attack", 
          "generic distinguishers", 
          "design ideas", 
          "security", 
          "new design ideas", 
          "attacks", 
          "weak keys", 
          "distinguishing attack", 
          "recent version", 
          "key", 
          "distinguisher", 
          "designers", 
          "complexity", 
          "design", 
          "new field", 
          "particular results", 
          "search", 
          "version", 
          "idea", 
          "applicability", 
          "new class", 
          "limitations", 
          "class", 
          "et al", 
          "research", 
          "analysis", 
          "assumption", 
          "field", 
          "results", 
          "contribution", 
          "insights", 
          "initial hopes", 
          "transfer", 
          "al", 
          "levels", 
          "new insights", 
          "hope", 
          "recovery", 
          "birthday", 
          "fruit", 
          "paper", 
          "plantlets", 
          "small-state stream ciphers", 
          "TMD tradeoff attacks", 
          "generic distinguishing attack", 
          "Englund et al", 
          "small-state grain-like stream ciphers", 
          "grain-like stream ciphers"
        ], 
        "name": "Design and analysis of small-state grain-like stream ciphers", 
        "pagination": "803-834", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092579418"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12095-017-0261-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12095-017-0261-6", 
          "https://app.dimensions.ai/details/publication/pub.1092579418"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_730.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12095-017-0261-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12095-017-0261-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12095-017-0261-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12095-017-0261-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12095-017-0261-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      22 PREDICATES      110 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12095-017-0261-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 anzsrc-for:0103
    5 schema:author N877d4e623dbc485b8a956381aed4afa0
    6 schema:citation sg:pub.10.1007/11535218_7
    7 sg:pub.10.1007/11593447_19
    8 sg:pub.10.1007/11693383_1
    9 sg:pub.10.1007/3-540-44448-3_1
    10 sg:pub.10.1007/3-540-45537-x_1
    11 sg:pub.10.1007/3-540-45961-8_28
    12 sg:pub.10.1007/978-3-319-13066-8_1
    13 sg:pub.10.1007/978-3-319-26617-6_7
    14 sg:pub.10.1007/978-3-319-31301-6_4
    15 sg:pub.10.1007/978-3-319-63697-9_8
    16 sg:pub.10.1007/978-3-319-63697-9_9
    17 sg:pub.10.1007/978-3-540-68351-3_14
    18 sg:pub.10.1007/978-3-540-71641-9
    19 sg:pub.10.1007/978-3-540-74735-2_31
    20 sg:pub.10.1007/978-3-642-01001-9_16
    21 sg:pub.10.1007/978-3-642-04138-9_20
    22 sg:pub.10.1007/978-3-662-46800-5_12
    23 sg:pub.10.1007/978-3-662-47989-6_32
    24 sg:pub.10.1007/978-3-662-48116-5_22
    25 sg:pub.10.1007/978-3-662-48800-3_23
    26 sg:pub.10.1007/978-3-662-49890-3_13
    27 schema:datePublished 2017-11-08
    28 schema:datePublishedReg 2017-11-08
    29 schema:description Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers to the birthday bound. Very recently, a new field of research has emerged, which searches for so-called small-state stream ciphers that try to overcome this limitation. In this paper, existing designs and known analysis of small-state stream ciphers are revisited and new insights on distinguishers and key recovery are derived based on TMD tradeoff attacks. A particular result is the transfer of a generic distinguishing attack suggested in 2007 by Englund et al. to this new class of lightweight ciphers. Our analysis shows that the initial hope of achieving full security against TMD tradeoff attacks by continuously using the secret key has failed. In particular, we provide generic distinguishers for Plantlet and Fruit with complexity significantly smaller than that of exhaustive key search. However, by studying the assumptions underlying the applicability of these attacks, we are able to come up with a new design idea for small-state stream ciphers, which might allow to finally achieve full security against TMD tradeoff attacks. Another contribution of this paper is the first key recovery attack against the most recent version of Fruit. We show that there are at least 264 weak keys, each of which does not provide 80-bit security as promised by designers.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf Nb1ef9c67eba948838ddcbf3d08d37345
    34 Nfd61b67b2d5f422ca951495d6b8b18c0
    35 sg:journal.1136695
    36 schema:keywords Englund et al
    37 TMD tradeoff attacks
    38 al
    39 analysis
    40 applicability
    41 assumption
    42 attacks
    43 birthday
    44 cipher
    45 class
    46 classical stream ciphers
    47 complexity
    48 contribution
    49 data tradeoff attacks
    50 design
    51 design ideas
    52 designers
    53 distinguisher
    54 distinguishing attack
    55 et al
    56 exhaustive key search
    57 field
    58 first key recovery attacks
    59 fruit
    60 full security
    61 generic distinguishers
    62 generic distinguishing attack
    63 grain-like stream ciphers
    64 hope
    65 idea
    66 initial hopes
    67 insights
    68 key
    69 key recovery
    70 key recovery attack
    71 key search
    72 levels
    73 lightweight ciphers
    74 limitations
    75 new class
    76 new design ideas
    77 new field
    78 new insights
    79 paper
    80 particular results
    81 plantlets
    82 recent version
    83 recovery
    84 recovery attack
    85 research
    86 results
    87 search
    88 secret key
    89 security
    90 security level
    91 small-state grain-like stream ciphers
    92 small-state stream ciphers
    93 stream cipher
    94 tradeoff attacks
    95 transfer
    96 version
    97 weak keys
    98 schema:name Design and analysis of small-state grain-like stream ciphers
    99 schema:pagination 803-834
    100 schema:productId N1e0400db3ac74df6a11cf530423f6a54
    101 Nbb7702a612cb4bebb075f3010d4fff7a
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092579418
    103 https://doi.org/10.1007/s12095-017-0261-6
    104 schema:sdDatePublished 2022-01-01T18:43
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher Nb76b2df35c7d420194dbab30a682a68c
    107 schema:url https://doi.org/10.1007/s12095-017-0261-6
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N1e0400db3ac74df6a11cf530423f6a54 schema:name doi
    112 schema:value 10.1007/s12095-017-0261-6
    113 rdf:type schema:PropertyValue
    114 N7f30ac9c99ac47a9ae01eb48b730832d rdf:first sg:person.014125113140.40
    115 rdf:rest rdf:nil
    116 N877d4e623dbc485b8a956381aed4afa0 rdf:first sg:person.07417550777.99
    117 rdf:rest Nef51a0e3a7ef4f6687bc5d0feba1dc28
    118 Na7a06ce227204cbd99831e173d05c796 rdf:first sg:person.07653531142.18
    119 rdf:rest N7f30ac9c99ac47a9ae01eb48b730832d
    120 Nb1ef9c67eba948838ddcbf3d08d37345 schema:volumeNumber 10
    121 rdf:type schema:PublicationVolume
    122 Nb76b2df35c7d420194dbab30a682a68c schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 Nbb7702a612cb4bebb075f3010d4fff7a schema:name dimensions_id
    125 schema:value pub.1092579418
    126 rdf:type schema:PropertyValue
    127 Nef51a0e3a7ef4f6687bc5d0feba1dc28 rdf:first sg:person.014033162131.95
    128 rdf:rest Na7a06ce227204cbd99831e173d05c796
    129 Nfd61b67b2d5f422ca951495d6b8b18c0 schema:issueNumber 5
    130 rdf:type schema:PublicationIssue
    131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Mathematical Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Pure Mathematics
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Applied Mathematics
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Numerical and Computational Mathematics
    142 rdf:type schema:DefinedTerm
    143 sg:journal.1136695 schema:issn 1936-2447
    144 1936-2455
    145 schema:name Cryptography and Communications
    146 schema:publisher Springer Nature
    147 rdf:type schema:Periodical
    148 sg:person.014033162131.95 schema:affiliation grid-institutes:grid.5601.2
    149 schema:familyName Krause
    150 schema:givenName Matthias
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033162131.95
    152 rdf:type schema:Person
    153 sg:person.014125113140.40 schema:affiliation grid-institutes:grid.458446.f
    154 schema:familyName Zhang
    155 schema:givenName Bin
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125113140.40
    157 rdf:type schema:Person
    158 sg:person.07417550777.99 schema:affiliation grid-institutes:grid.5601.2
    159 schema:familyName Hamann
    160 schema:givenName Matthias
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417550777.99
    162 rdf:type schema:Person
    163 sg:person.07653531142.18 schema:affiliation grid-institutes:grid.410380.e
    164 schema:familyName Meier
    165 schema:givenName Willi
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18
    167 rdf:type schema:Person
    168 sg:pub.10.1007/11535218_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022105597
    169 https://doi.org/10.1007/11535218_7
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/11593447_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013909474
    172 https://doi.org/10.1007/11593447_19
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/11693383_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041777933
    175 https://doi.org/10.1007/11693383_1
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/3-540-44448-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020490931
    178 https://doi.org/10.1007/3-540-44448-3_1
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/3-540-45537-x_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032737273
    181 https://doi.org/10.1007/3-540-45537-x_1
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/3-540-45961-8_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029744006
    184 https://doi.org/10.1007/3-540-45961-8_28
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-319-13066-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037827314
    187 https://doi.org/10.1007/978-3-319-13066-8_1
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-319-26617-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003776867
    190 https://doi.org/10.1007/978-3-319-26617-6_7
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-3-319-31301-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035779896
    193 https://doi.org/10.1007/978-3-319-31301-6_4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-3-319-63697-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024676
    196 https://doi.org/10.1007/978-3-319-63697-9_8
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-319-63697-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091024677
    199 https://doi.org/10.1007/978-3-319-63697-9_9
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-540-68351-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027288622
    202 https://doi.org/10.1007/978-3-540-68351-3_14
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-3-540-71641-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003452546
    205 https://doi.org/10.1007/978-3-540-71641-9
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/978-3-540-74735-2_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365111
    208 https://doi.org/10.1007/978-3-540-74735-2_31
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/978-3-642-01001-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052713322
    211 https://doi.org/10.1007/978-3-642-01001-9_16
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/978-3-642-04138-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049385172
    214 https://doi.org/10.1007/978-3-642-04138-9_20
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/978-3-662-46800-5_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291591
    217 https://doi.org/10.1007/978-3-662-46800-5_12
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/978-3-662-47989-6_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023908343
    220 https://doi.org/10.1007/978-3-662-47989-6_32
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-3-662-48116-5_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917707
    223 https://doi.org/10.1007/978-3-662-48116-5_22
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-3-662-48800-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001321237
    226 https://doi.org/10.1007/978-3-662-48800-3_23
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/978-3-662-49890-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014166962
    229 https://doi.org/10.1007/978-3-662-49890-3_13
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.410380.e schema:alternateName FHNW, Windisch, Switzerland
    232 schema:name FHNW, Windisch, Switzerland
    233 rdf:type schema:Organization
    234 grid-institutes:grid.458446.f schema:alternateName TCA, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
    235 schema:name TCA, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
    236 rdf:type schema:Organization
    237 grid-institutes:grid.5601.2 schema:alternateName Lehrstuhl für Theoretische Informatik, Universität Mannheim, 68131, Mannheim, Germany
    238 schema:name Lehrstuhl für Theoretische Informatik, Universität Mannheim, 68131, Mannheim, Germany
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...