Correlation attacks on combination generators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08-21

AUTHORS

Anne Canteaut, María Naya-Plasencia

ABSTRACT

The combination generator is a popular stream cipher construction. It consists of several independent devices working in parallel whose outputs are combined by a Boolean function. The output of this function is the keystream. The security of this generator has been extensively studied in the case where the devices are LFSRs. Some particular cases where the devices are nonlinear have also been studied, most notably the different versions of the eSTREAM proposal named Achterbahn. Several cryptanalysis techniques against these ciphers have been published, extending the classical correlation attack. But each of these attacks has been presented mainly in a very particular scenario. Therefore, this paper aims at generalising these methods to any combination generator in order to be able to compare their respective advantages and to determine the optimal attack for each particular generator. Generic formulas for the data-time-space complexities are then provided, which only depend on the number of devices, their periods and the number of their internal states and of the Boolean combining function. Some of the considered improvements can also be used in a much more general context, which includes linear attacks against some block ciphers. More... »

PAGES

147-171

References to SciGraph publications

  • 1985. Fast Algorithms for Signal Processing and Error Control in THE IMPACT OF PROCESSING TECHNIQUES ON COMMUNICATIONS
  • 2000-08-11. Fast Correlation Attacks through Reconstruction of Linear Polynomials in ADVANCES IN CRYPTOLOGY — CRYPTO 2000
  • 1989-10. Fast correlation attacks on certain stream ciphers in JOURNAL OF CRYPTOLOGY
  • 2004. On Multiple Linear Approximations in ADVANCES IN CRYPTOLOGY – CRYPTO 2004
  • 1994. The First Experimental Cryptanalysis of the Data Encryption Standard in ADVANCES IN CRYPTOLOGY — CRYPTO ’94
  • 2003. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback in ADVANCES IN CRYPTOLOGY - CRYPTO 2003
  • 2008-01-01. Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation in RESEARCH IN CRYPTOLOGY
  • 2000-05-09. Maximum Correlation Analysis of Nonlinear Combining Functions in Stream Ciphers in JOURNAL OF CRYPTOLOGY
  • 2002-07-12. Distinguishing Attacks on SOBER-t16 and t32 in FAST SOFTWARE ENCRYPTION
  • 2000-05-12. Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5 in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2000
  • 2002-09-13. Cryptanalysis of Stream Ciphers with Linear Masking in ADVANCES IN CRYPTOLOGY — CRYPTO 2002
  • 2002-04-29. Fast Correlation Attacks: An Algorithmic Point of View in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2002
  • 2003-05-13. Algebraic Attacks on Stream Ciphers with Linear Feedback in ADVANCES IN CRYPTOLOGY — EUROCRYPT 2003
  • 2009. Multidimensional Extension of Matsui’s Algorithm 2 in FAST SOFTWARE ENCRYPTION
  • 1999-04-15. Improved Fast Correlation Attacks on Stream Ciphers via Convolutional Codes in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’99
  • 2006. Cryptanalysis of Achterbahn in FAST SOFTWARE ENCRYPTION
  • 1988. Fast Correlation Attacks on Stream Ciphers in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’88
  • 2001. A Simple Algorithm for Fast Correlation Attacks on Stream Ciphers in FAST SOFTWARE ENCRYPTION
  • 2001. Ciphertext only Reconstruction of Stream Ciphers Based on Combination Generators in FAST SOFTWARE ENCRYPTION
  • 2003. Optimal Key Ranking Procedures in a Statistical Cryptanalysis in FAST SOFTWARE ENCRYPTION
  • 2009. On Linear Cryptanalysis with Many Linear Approximations in CRYPTOGRAPHY AND CODING
  • 2008-10-17. An overview of distinguishing attacks on stream ciphers in CRYPTOGRAPHY AND COMMUNICATIONS
  • 2007-01-01. Cryptanalysis of Achterbahn-Version 2 in SELECTED AREAS IN CRYPTOGRAPHY
  • 2007-01-01. Cryptanalysis of Achterbahn-128/80 in FAST SOFTWARE ENCRYPTION
  • 1999-12-16. Fast Correlation Attacks Based on Turbo Code Techniques in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 2004. Faster Correlation Attack on Bluetooth Keystream Generator E0 in ADVANCES IN CRYPTOLOGY – CRYPTO 2004
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12095-012-0069-3

    DOI

    http://dx.doi.org/10.1007/s12095-012-0069-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019823386


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INRIA project-team SECRET, B.P. 105, 78153, Le Chesnay cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "INRIA project-team SECRET, B.P. 105, 78153, Le Chesnay cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Canteaut", 
            "givenName": "Anne", 
            "id": "sg:person.012730266023.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730266023.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire PRISM, Universit\u00e9 de Versailles St-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire PRISM, Universit\u00e9 de Versailles St-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naya-Plasencia", 
            "givenName": "Mar\u00eda", 
            "id": "sg:person.013206304341.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-009-5113-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044690871", 
              "https://doi.org/10.1007/978-94-009-5113-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48658-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043823305", 
              "https://doi.org/10.1007/3-540-48658-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39200-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043854228", 
              "https://doi.org/10.1007/3-540-39200-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02252874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044904154", 
              "https://doi.org/10.1007/bf02252874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74462-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018046563", 
              "https://doi.org/10.1007/978-3-540-74462-7_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74619-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009298512", 
              "https://doi.org/10.1007/978-3-540-74619-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45146-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020782332", 
              "https://doi.org/10.1007/978-3-540-45146-4_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45708-9_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009122537", 
              "https://doi.org/10.1007/3-540-45708-9_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46035-7_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028779847", 
              "https://doi.org/10.1007/3-540-46035-7_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001450010007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032278657", 
              "https://doi.org/10.1007/s001450010007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39887-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031114703", 
              "https://doi.org/10.1007/978-3-540-39887-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48910-x_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031730558", 
              "https://doi.org/10.1007/3-540-48910-x_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45539-6_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005864815", 
              "https://doi.org/10.1007/3-540-45539-6_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45961-8_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029744006", 
              "https://doi.org/10.1007/3-540-45961-8_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019543392", 
              "https://doi.org/10.1007/3-540-48405-1_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10868-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032824207", 
              "https://doi.org/10.1007/978-3-642-10868-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28628-8_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024632240", 
              "https://doi.org/10.1007/978-3-540-28628-8_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28628-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003364452", 
              "https://doi.org/10.1007/978-3-540-28628-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12095-008-0006-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014832368", 
              "https://doi.org/10.1007/s12095-008-0006-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44706-7_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040294716", 
              "https://doi.org/10.1007/3-540-44706-7_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45661-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029761136", 
              "https://doi.org/10.1007/3-540-45661-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11799313_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017751962", 
              "https://doi.org/10.1007/11799313_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44706-7_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010246276", 
              "https://doi.org/10.1007/3-540-44706-7_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88353-1_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044885454", 
              "https://doi.org/10.1007/978-3-540-88353-1_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44598-6_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019717609", 
              "https://doi.org/10.1007/3-540-44598-6_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-03317-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012185589", 
              "https://doi.org/10.1007/978-3-642-03317-9_13"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-08-21", 
        "datePublishedReg": "2012-08-21", 
        "description": "The combination generator is a popular stream cipher construction. It consists of several independent devices working in parallel whose outputs are combined by a Boolean function. The output of this function is the keystream. The security of this generator has been extensively studied in the case where the devices are LFSRs. Some particular cases where the devices are nonlinear have also been studied, most notably the different versions of the eSTREAM proposal named Achterbahn. Several cryptanalysis techniques against these ciphers have been published, extending the classical correlation attack. But each of these attacks has been presented mainly in a very particular scenario. Therefore, this paper aims at generalising these methods to any combination generator in order to be able to compare their respective advantages and to determine the optimal attack for each particular generator. Generic formulas for the data-time-space complexities are then provided, which only depend on the number of devices, their periods and the number of their internal states and of the Boolean combining function. Some of the considered improvements can also be used in a much more general context, which includes linear attacks against some block ciphers.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12095-012-0069-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136695", 
            "issn": [
              "1936-2447", 
              "1936-2455"
            ], 
            "name": "Cryptography and Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "correlation attacks", 
          "combination generator", 
          "stream cipher construction", 
          "number of devices", 
          "space complexity", 
          "cryptanalysis techniques", 
          "optimal attack", 
          "block cipher", 
          "independent devices", 
          "particular scenario", 
          "attacks", 
          "cipher", 
          "linear attack", 
          "different versions", 
          "respective advantages", 
          "Boolean functions", 
          "internal states", 
          "particular generator", 
          "devices", 
          "security", 
          "keystream", 
          "Boolean", 
          "Achterbahn", 
          "complexity", 
          "generator", 
          "LFSRs", 
          "scenarios", 
          "general context", 
          "output", 
          "proposal", 
          "version", 
          "advantages", 
          "technique", 
          "number", 
          "context", 
          "parallel", 
          "order", 
          "method", 
          "construction", 
          "particular case", 
          "improvement", 
          "function", 
          "generic formula", 
          "state", 
          "cases", 
          "formula", 
          "period", 
          "paper"
        ], 
        "name": "Correlation attacks on combination generators", 
        "pagination": "147-171", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019823386"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12095-012-0069-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12095-012-0069-3", 
          "https://app.dimensions.ai/details/publication/pub.1019823386"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_568.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12095-012-0069-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12095-012-0069-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12095-012-0069-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12095-012-0069-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12095-012-0069-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      100 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12095-012-0069-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 anzsrc-for:0103
    5 schema:author N6280994102a7428b85d8c97a1f64e3b4
    6 schema:citation sg:pub.10.1007/11799313_1
    7 sg:pub.10.1007/3-540-39200-9_21
    8 sg:pub.10.1007/3-540-44598-6_19
    9 sg:pub.10.1007/3-540-44706-7_12
    10 sg:pub.10.1007/3-540-44706-7_13
    11 sg:pub.10.1007/3-540-45539-6_40
    12 sg:pub.10.1007/3-540-45661-9_16
    13 sg:pub.10.1007/3-540-45708-9_33
    14 sg:pub.10.1007/3-540-45961-8_28
    15 sg:pub.10.1007/3-540-46035-7_14
    16 sg:pub.10.1007/3-540-48405-1_12
    17 sg:pub.10.1007/3-540-48658-5_1
    18 sg:pub.10.1007/3-540-48910-x_24
    19 sg:pub.10.1007/978-3-540-28628-8_1
    20 sg:pub.10.1007/978-3-540-28628-8_25
    21 sg:pub.10.1007/978-3-540-39887-5_18
    22 sg:pub.10.1007/978-3-540-45146-4_11
    23 sg:pub.10.1007/978-3-540-74462-7_4
    24 sg:pub.10.1007/978-3-540-74619-5_5
    25 sg:pub.10.1007/978-3-540-88353-1_12
    26 sg:pub.10.1007/978-3-642-03317-9_13
    27 sg:pub.10.1007/978-3-642-10868-6_8
    28 sg:pub.10.1007/978-94-009-5113-6_8
    29 sg:pub.10.1007/bf02252874
    30 sg:pub.10.1007/s001450010007
    31 sg:pub.10.1007/s12095-008-0006-7
    32 schema:datePublished 2012-08-21
    33 schema:datePublishedReg 2012-08-21
    34 schema:description The combination generator is a popular stream cipher construction. It consists of several independent devices working in parallel whose outputs are combined by a Boolean function. The output of this function is the keystream. The security of this generator has been extensively studied in the case where the devices are LFSRs. Some particular cases where the devices are nonlinear have also been studied, most notably the different versions of the eSTREAM proposal named Achterbahn. Several cryptanalysis techniques against these ciphers have been published, extending the classical correlation attack. But each of these attacks has been presented mainly in a very particular scenario. Therefore, this paper aims at generalising these methods to any combination generator in order to be able to compare their respective advantages and to determine the optimal attack for each particular generator. Generic formulas for the data-time-space complexities are then provided, which only depend on the number of devices, their periods and the number of their internal states and of the Boolean combining function. Some of the considered improvements can also be used in a much more general context, which includes linear attacks against some block ciphers.
    35 schema:genre article
    36 schema:isAccessibleForFree false
    37 schema:isPartOf Na820f259b04f4a71839dbbb4ae73d32b
    38 Nf1e3630e54e846bd8912a5044ff3ebba
    39 sg:journal.1136695
    40 schema:keywords Achterbahn
    41 Boolean
    42 Boolean functions
    43 LFSRs
    44 advantages
    45 attacks
    46 block cipher
    47 cases
    48 cipher
    49 combination generator
    50 complexity
    51 construction
    52 context
    53 correlation attacks
    54 cryptanalysis techniques
    55 devices
    56 different versions
    57 formula
    58 function
    59 general context
    60 generator
    61 generic formula
    62 improvement
    63 independent devices
    64 internal states
    65 keystream
    66 linear attack
    67 method
    68 number
    69 number of devices
    70 optimal attack
    71 order
    72 output
    73 paper
    74 parallel
    75 particular case
    76 particular generator
    77 particular scenario
    78 period
    79 proposal
    80 respective advantages
    81 scenarios
    82 security
    83 space complexity
    84 state
    85 stream cipher construction
    86 technique
    87 version
    88 schema:name Correlation attacks on combination generators
    89 schema:pagination 147-171
    90 schema:productId Nfb43f643e33c4921a23f76848e6f5697
    91 Nfe4e239389184920b4a876053e61f874
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019823386
    93 https://doi.org/10.1007/s12095-012-0069-3
    94 schema:sdDatePublished 2022-09-02T15:56
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Nc866b2ff23454b1ca83e12beeadd840e
    97 schema:url https://doi.org/10.1007/s12095-012-0069-3
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N6280994102a7428b85d8c97a1f64e3b4 rdf:first sg:person.012730266023.08
    102 rdf:rest Ncb4d5db38eff4164b0829a4dfa6454ce
    103 Na820f259b04f4a71839dbbb4ae73d32b schema:volumeNumber 4
    104 rdf:type schema:PublicationVolume
    105 Nc866b2ff23454b1ca83e12beeadd840e schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Ncb4d5db38eff4164b0829a4dfa6454ce rdf:first sg:person.013206304341.94
    108 rdf:rest rdf:nil
    109 Nf1e3630e54e846bd8912a5044ff3ebba schema:issueNumber 3-4
    110 rdf:type schema:PublicationIssue
    111 Nfb43f643e33c4921a23f76848e6f5697 schema:name dimensions_id
    112 schema:value pub.1019823386
    113 rdf:type schema:PropertyValue
    114 Nfe4e239389184920b4a876053e61f874 schema:name doi
    115 schema:value 10.1007/s12095-012-0069-3
    116 rdf:type schema:PropertyValue
    117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Mathematical Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Pure Mathematics
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Applied Mathematics
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Numerical and Computational Mathematics
    128 rdf:type schema:DefinedTerm
    129 sg:journal.1136695 schema:issn 1936-2447
    130 1936-2455
    131 schema:name Cryptography and Communications
    132 schema:publisher Springer Nature
    133 rdf:type schema:Periodical
    134 sg:person.012730266023.08 schema:affiliation grid-institutes:None
    135 schema:familyName Canteaut
    136 schema:givenName Anne
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730266023.08
    138 rdf:type schema:Person
    139 sg:person.013206304341.94 schema:affiliation grid-institutes:None
    140 schema:familyName Naya-Plasencia
    141 schema:givenName María
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94
    143 rdf:type schema:Person
    144 sg:pub.10.1007/11799313_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017751962
    145 https://doi.org/10.1007/11799313_1
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/3-540-39200-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043854228
    148 https://doi.org/10.1007/3-540-39200-9_21
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/3-540-44598-6_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019717609
    151 https://doi.org/10.1007/3-540-44598-6_19
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/3-540-44706-7_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040294716
    154 https://doi.org/10.1007/3-540-44706-7_12
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/3-540-44706-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010246276
    157 https://doi.org/10.1007/3-540-44706-7_13
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/3-540-45539-6_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005864815
    160 https://doi.org/10.1007/3-540-45539-6_40
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/3-540-45661-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029761136
    163 https://doi.org/10.1007/3-540-45661-9_16
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/3-540-45708-9_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009122537
    166 https://doi.org/10.1007/3-540-45708-9_33
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/3-540-45961-8_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029744006
    169 https://doi.org/10.1007/3-540-45961-8_28
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/3-540-46035-7_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028779847
    172 https://doi.org/10.1007/3-540-46035-7_14
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/3-540-48405-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019543392
    175 https://doi.org/10.1007/3-540-48405-1_12
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/3-540-48658-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043823305
    178 https://doi.org/10.1007/3-540-48658-5_1
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/3-540-48910-x_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031730558
    181 https://doi.org/10.1007/3-540-48910-x_24
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/978-3-540-28628-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003364452
    184 https://doi.org/10.1007/978-3-540-28628-8_1
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-540-28628-8_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024632240
    187 https://doi.org/10.1007/978-3-540-28628-8_25
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-540-39887-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031114703
    190 https://doi.org/10.1007/978-3-540-39887-5_18
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-3-540-45146-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020782332
    193 https://doi.org/10.1007/978-3-540-45146-4_11
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-3-540-74462-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018046563
    196 https://doi.org/10.1007/978-3-540-74462-7_4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-540-74619-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298512
    199 https://doi.org/10.1007/978-3-540-74619-5_5
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-540-88353-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044885454
    202 https://doi.org/10.1007/978-3-540-88353-1_12
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-3-642-03317-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012185589
    205 https://doi.org/10.1007/978-3-642-03317-9_13
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/978-3-642-10868-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032824207
    208 https://doi.org/10.1007/978-3-642-10868-6_8
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/978-94-009-5113-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044690871
    211 https://doi.org/10.1007/978-94-009-5113-6_8
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf02252874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044904154
    214 https://doi.org/10.1007/bf02252874
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s001450010007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032278657
    217 https://doi.org/10.1007/s001450010007
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s12095-008-0006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014832368
    220 https://doi.org/10.1007/s12095-008-0006-7
    221 rdf:type schema:CreativeWork
    222 grid-institutes:None schema:alternateName INRIA project-team SECRET, B.P. 105, 78153, Le Chesnay cedex, France
    223 Laboratoire PRISM, Université de Versailles St-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
    224 schema:name INRIA project-team SECRET, B.P. 105, 78153, Le Chesnay cedex, France
    225 Laboratoire PRISM, Université de Versailles St-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...