Identifying influential nodes in complex networks based on Neighbours and edges View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-19

AUTHORS

Zengzhen Shao, Shulei Liu, Yanyu Zhao, Yanxiu Liu

ABSTRACT

Identifying the influential nodes is one of the research focuses in network information mining. Many centrality measures used to evaluate influence abilities of nodes can’t balance between high accuracy and low time complexity. The NL centrality based on the neighbors and importance of edges is proposed which considers the second-degree neighbor’s impact on the influence of a node and utilizes the connectivity and unsubstitutability of edge to distinguish topological position of a node. In order to evaluate the accuracy of NL centrality, the SIR model is used to simulate the process of virus propagation in four real-world networks. Experiment results of monotonicity, validity and efficiency demonstrate that the NL centrality has a competitive performance in distinguishing the influence of nodes and it is suitable for large-scale networks because of the high efficiency in computation. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12083-018-0681-x

DOI

http://dx.doi.org/10.1007/s12083-018-0681-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107084627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410585.d", 
          "name": [
            "School of Data and Computer Science, Shandong Women\u2019s University, Jinan, China", 
            "School of Information Science and Engineering, Shandong Normal University, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Zengzhen", 
        "id": "sg:person.07615037473.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410585.d", 
          "name": [
            "School of Information Science and Engineering, Shandong Normal University, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shulei", 
        "id": "sg:person.010213444370.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010213444370.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410585.d", 
          "name": [
            "School of Information Science and Engineering, Shandong Normal University, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yanyu", 
        "id": "sg:person.012403765770.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403765770.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "School of Data and Computer Science, Shandong Women\u2019s University, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanxiu", 
        "id": "sg:person.014574307370.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574307370.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physa.2016.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001358541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.09.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001485816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2011.00083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004152986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004465822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004812402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.046108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004812402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2013.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010002333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1953122.1953146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.10.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015993670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016710118", 
          "https://doi.org/10.1038/nphys1746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2013.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016826938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(78)90021-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2014.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021255021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025048784", 
          "https://doi.org/10.1007/bf02289527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025048784", 
          "https://doi.org/10.1007/bf02289527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030738034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2011.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032430529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033168473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033168473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036521671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036521671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2016.02.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037485817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2014.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038617199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2014.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041719316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbusres.2012.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042610068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047596091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048541781", 
          "https://doi.org/10.1038/ng.3593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2017.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048897358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050557365", 
          "https://doi.org/10.1038/ncomms7868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.248701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053079789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.248701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053079789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1966.10480879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.046114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.046114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2008.925623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183117500140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078806333", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2017.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083532779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083697133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.04.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085417752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2017.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085862892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979218501187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100800690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2018.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3033543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102895783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-19", 
    "datePublishedReg": "2018-09-19", 
    "description": "Identifying the influential nodes is one of the research focuses in network information mining. Many centrality measures used to evaluate influence abilities of nodes can\u2019t balance between high accuracy and low time complexity. The NL centrality based on the neighbors and importance of edges is proposed which considers the second-degree neighbor\u2019s impact on the influence of a node and utilizes the connectivity and unsubstitutability of edge to distinguish topological position of a node. In order to evaluate the accuracy of NL centrality, the SIR model is used to simulate the process of virus propagation in four real-world networks. Experiment results of monotonicity, validity and efficiency demonstrate that the NL centrality has a competitive performance in distinguishing the influence of nodes and it is suitable for large-scale networks because of the high efficiency in computation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12083-018-0681-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4917120", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136039", 
        "issn": [
          "1936-6442", 
          "1936-6450"
        ], 
        "name": "Peer-to-Peer Networking and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Identifying influential nodes in complex networks based on Neighbours and edges", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ab690fd6d39943913cc940a7c5849f147458676037b442bbcd84f1e231134f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12083-018-0681-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107084627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12083-018-0681-x", 
      "https://app.dimensions.ai/details/publication/pub.1107084627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12083-018-0681-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0681-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0681-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0681-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0681-x'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12083-018-0681-x schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3e480eaacfd4406e837db369ee81185c
4 schema:citation sg:pub.10.1007/bf02289527
5 sg:pub.10.1038/30918
6 sg:pub.10.1038/ncomms7868
7 sg:pub.10.1038/ng.3593
8 sg:pub.10.1038/nphys1746
9 https://app.dimensions.ai/details/publication/pub.1078806333
10 https://doi.org/10.1016/0378-8733(78)90021-7
11 https://doi.org/10.1016/j.chaos.2017.01.007
12 https://doi.org/10.1016/j.chaos.2017.05.040
13 https://doi.org/10.1016/j.chaos.2018.03.014
14 https://doi.org/10.1016/j.ijepes.2017.01.010
15 https://doi.org/10.1016/j.jbusres.2012.07.005
16 https://doi.org/10.1016/j.neucom.2017.04.064
17 https://doi.org/10.1016/j.physa.2011.09.017
18 https://doi.org/10.1016/j.physa.2013.06.059
19 https://doi.org/10.1016/j.physa.2014.02.002
20 https://doi.org/10.1016/j.physa.2014.02.032
21 https://doi.org/10.1016/j.physa.2014.02.041
22 https://doi.org/10.1016/j.physa.2015.04.035
23 https://doi.org/10.1016/j.physa.2016.02.028
24 https://doi.org/10.1016/j.physa.2016.02.049
25 https://doi.org/10.1016/j.physa.2016.05.048
26 https://doi.org/10.1016/j.physa.2016.08.041
27 https://doi.org/10.1016/j.physa.2016.10.086
28 https://doi.org/10.1016/j.physa.2017.02.007
29 https://doi.org/10.1016/j.physleta.2013.02.039
30 https://doi.org/10.1016/j.physleta.2014.09.054
31 https://doi.org/10.1016/j.physrep.2016.06.007
32 https://doi.org/10.1080/01621459.1966.10480879
33 https://doi.org/10.1103/physreve.73.046108
34 https://doi.org/10.1103/physreve.84.046114
35 https://doi.org/10.1103/physrevlett.105.218701
36 https://doi.org/10.1103/physrevlett.89.248701
37 https://doi.org/10.1109/tnet.2008.925623
38 https://doi.org/10.1126/science.1061076
39 https://doi.org/10.1142/s0129183117500140
40 https://doi.org/10.1142/s0217979218501187
41 https://doi.org/10.1145/1953122.1953146
42 https://doi.org/10.2307/3033543
43 https://doi.org/10.3389/fnhum.2011.00083
44 schema:datePublished 2018-09-19
45 schema:datePublishedReg 2018-09-19
46 schema:description Identifying the influential nodes is one of the research focuses in network information mining. Many centrality measures used to evaluate influence abilities of nodes can’t balance between high accuracy and low time complexity. The NL centrality based on the neighbors and importance of edges is proposed which considers the second-degree neighbor’s impact on the influence of a node and utilizes the connectivity and unsubstitutability of edge to distinguish topological position of a node. In order to evaluate the accuracy of NL centrality, the SIR model is used to simulate the process of virus propagation in four real-world networks. Experiment results of monotonicity, validity and efficiency demonstrate that the NL centrality has a competitive performance in distinguishing the influence of nodes and it is suitable for large-scale networks because of the high efficiency in computation.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1136039
51 schema:name Identifying influential nodes in complex networks based on Neighbours and edges
52 schema:pagination 1-10
53 schema:productId N1b064187f86b4bdfa2f85884909dd3d5
54 N4e4a8f7b89a1497e91cc0de5d445c543
55 N945b904a52ac4365ad5c461df9c2fba1
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107084627
57 https://doi.org/10.1007/s12083-018-0681-x
58 schema:sdDatePublished 2019-04-10T14:13
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ncec2e0cd1806488c960f41eb6498c09f
61 schema:url http://link.springer.com/10.1007%2Fs12083-018-0681-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1b064187f86b4bdfa2f85884909dd3d5 schema:name doi
66 schema:value 10.1007/s12083-018-0681-x
67 rdf:type schema:PropertyValue
68 N3e480eaacfd4406e837db369ee81185c rdf:first sg:person.07615037473.39
69 rdf:rest Ndd0a25b2f76d41ccb438fe724fa39b2e
70 N4e4a8f7b89a1497e91cc0de5d445c543 schema:name readcube_id
71 schema:value 6ab690fd6d39943913cc940a7c5849f147458676037b442bbcd84f1e231134f7
72 rdf:type schema:PropertyValue
73 N798252e1e0584dccbb1c8f7534f83056 rdf:first sg:person.012403765770.23
74 rdf:rest Nf5356f1011014be691062b967ae0dc86
75 N945b904a52ac4365ad5c461df9c2fba1 schema:name dimensions_id
76 schema:value pub.1107084627
77 rdf:type schema:PropertyValue
78 Ncec2e0cd1806488c960f41eb6498c09f schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ndd0a25b2f76d41ccb438fe724fa39b2e rdf:first sg:person.010213444370.22
81 rdf:rest N798252e1e0584dccbb1c8f7534f83056
82 Nf5356f1011014be691062b967ae0dc86 rdf:first sg:person.014574307370.32
83 rdf:rest rdf:nil
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:grant.4917120 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0681-x
91 rdf:type schema:MonetaryGrant
92 sg:journal.1136039 schema:issn 1936-6442
93 1936-6450
94 schema:name Peer-to-Peer Networking and Applications
95 rdf:type schema:Periodical
96 sg:person.010213444370.22 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
97 schema:familyName Liu
98 schema:givenName Shulei
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010213444370.22
100 rdf:type schema:Person
101 sg:person.012403765770.23 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
102 schema:familyName Zhao
103 schema:givenName Yanyu
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403765770.23
105 rdf:type schema:Person
106 sg:person.014574307370.32 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
107 schema:familyName Liu
108 schema:givenName Yanxiu
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574307370.32
110 rdf:type schema:Person
111 sg:person.07615037473.39 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
112 schema:familyName Shao
113 schema:givenName Zengzhen
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615037473.39
115 rdf:type schema:Person
116 sg:pub.10.1007/bf02289527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025048784
117 https://doi.org/10.1007/bf02289527
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
120 https://doi.org/10.1038/30918
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms7868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050557365
123 https://doi.org/10.1038/ncomms7868
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ng.3593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048541781
126 https://doi.org/10.1038/ng.3593
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
129 https://doi.org/10.1038/nphys1746
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1078806333 schema:CreativeWork
132 https://doi.org/10.1016/0378-8733(78)90021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916901
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.chaos.2017.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048897358
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.chaos.2017.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862892
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.chaos.2018.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550184
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijepes.2017.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083532779
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jbusres.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042610068
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neucom.2017.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085417752
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physa.2011.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032430529
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.physa.2013.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016826938
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physa.2014.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038617199
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.physa.2014.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041719316
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.physa.2014.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021255021
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.physa.2015.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047596091
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.physa.2016.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030738034
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.physa.2016.02.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037485817
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.physa.2016.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001358541
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physa.2016.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004465822
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.physa.2016.10.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015993670
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.physa.2017.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083697133
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.physleta.2013.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010002333
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.physleta.2014.09.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001485816
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.physrep.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033168473
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/01621459.1966.10480879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300036
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.73.046108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004812402
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.84.046114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060742613
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.105.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036521671
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.89.248701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053079789
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tnet.2008.925623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715042
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1061076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445065
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1142/s0129183117500140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906018
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1142/s0217979218501187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100800690
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/1953122.1953146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726775
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2307/3033543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102895783
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3389/fnhum.2011.00083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004152986
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.410585.d schema:alternateName Shandong Normal University
201 schema:name School of Data and Computer Science, Shandong Women’s University, Jinan, China
202 School of Information Science and Engineering, Shandong Normal University, Jinan, China
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
205 schema:name School of Data and Computer Science, Shandong Women’s University, Jinan, China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...