Connectivity preserving obstacle avoidance localized motion planning algorithms for mobile wireless sensor networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Md. Yeakub Hassan, Faisal Hussain, Salimur Choudhury

ABSTRACT

Mobile wireless sensor networks (MWSN) are better in terms of coverage and it plays an important role in ubiquitous wireless networks. We design Cellular Automaton (CA) based localized motion planning algorithms for mobile wireless sensors. We propose cellular automaton based algorithms for both dispersion and gathering problems. The dispersion algorithm is intended for self-deployment purpose with the goal of increasing the sensing coverage of the network. We apply a probabilistic approach that maximizes the network coverage as well as maintains the connectivity of the network. In addition, after finishing the dispersion, a gathering algorithm guides the sensors to round up to a single place for collection. It is noteworthy that both algorithms are synchronous which means that all sensors run algorithms in parallel at the same time. Moreover, our algorithms allow the sensors to avert obstacles in their path of movement. As cellular automaton functions depend on the local information about the network strictly, they are suitable for MWSN in practice. We evaluate the performance of our algorithm based on some defined metrics i.e., coverage, strongly connected coverage. We find that our dispersion algorithm maintains better coverage than state-of-the-art algorithm. Furthermore, in case of synchronous gathering, sensors get disconnected for some cases to form multiple clusters while using state-of-the-art algorithm, but our proposed gathering algorithm is always able to provide the connectivity. More... »

PAGES

647-659

References to SciGraph publications

  • 2018. Wireless Sensor Networks for Urban Information Systems: Preliminary Results of Integration of an Electric Vehicle as a Mobile Node in ROBOT 2017: THIRD IBERIAN ROBOTICS CONFERENCE
  • 2012. Reliable Node Placement in Wireless Sensor Networks Using Cellular Automata in UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION
  • 2017-10-07. Universally Optimal Gathering Under Limited Visibility in STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS
  • 2017-11. Connected sensor cover and related problems in PEER-TO-PEER NETWORKING AND APPLICATIONS
  • 2016. Localized Load Balancing in RFID Systems in THEORY AND PRACTICE OF NATURAL COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12083-018-0656-y

    DOI

    http://dx.doi.org/10.1007/s12083-018-0656-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103790915


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Green University of Bangladesh", 
              "id": "https://www.grid.ac/institutes/grid.443003.0", 
              "name": [
                "Department of Computer Science and Engineering, Green University of Bangladesh, Dhaka, Bangladesh"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hassan", 
            "givenName": "Md. Yeakub", 
            "id": "sg:person.012774047052.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774047052.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Islamic University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.443073.7", 
              "name": [
                "Department of Computer Science and Engineering, Islamic University of Technology, Gazipur, Bangladesh"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hussain", 
            "givenName": "Faisal", 
            "id": "sg:person.011325356323.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325356323.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lakehead University", 
              "id": "https://www.grid.ac/institutes/grid.258900.6", 
              "name": [
                "Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choudhury", 
            "givenName": "Salimur", 
            "id": "sg:person.010612345717.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010612345717.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12083-016-0442-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005007249", 
              "https://doi.org/10.1007/s12083-016-0442-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12083-016-0442-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005007249", 
              "https://doi.org/10.1007/s12083-016-0442-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jda.2015.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011597230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3182/20130925-2-de-4044.00034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012382070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2005.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013680842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2529973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014028991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32894-7_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022297830", 
              "https://doi.org/10.1007/978-3-642-32894-7_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17445760.2013.809082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025484760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.adhoc.2016.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026832440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1989493.1989515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040233627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1641776.1641777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053595548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2015.2498281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061823422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2013.121813.130198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061829004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1587/transcom.e98.b.1294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068087178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/1767-2424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072599939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-com.2016.1264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084821582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-49001-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084906514", 
              "https://doi.org/10.1007/978-3-319-49001-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69084-1_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092100621", 
              "https://doi.org/10.1007/978-3-319-69084-1_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69084-1_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092100621", 
              "https://doi.org/10.1007/978-3-319-69084-1_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcnc.2017.7925559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093227928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/dcoss.2012.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093307940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcnc.2015.7127664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093461759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scored.2013.7002637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093525459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/anss.2005.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093799549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isic.1995.525098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093902564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipsn.2008.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094074149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2008.4536245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094122336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wcnc.2012.6214185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094153201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/milcom.2007.4455216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094822620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccas.2013.6704167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094914067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2006.377220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094924674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2316/p.2011.735-089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099200482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-70836-2_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099747271", 
              "https://doi.org/10.1007/978-3-319-70836-2_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17445760.2017.1419242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100554571"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Mobile wireless sensor networks (MWSN) are better in terms of coverage and it plays an important role in ubiquitous wireless networks. We design Cellular Automaton (CA) based localized motion planning algorithms for mobile wireless sensors. We propose cellular automaton based algorithms for both dispersion and gathering problems. The dispersion algorithm is intended for self-deployment purpose with the goal of increasing the sensing coverage of the network. We apply a probabilistic approach that maximizes the network coverage as well as maintains the connectivity of the network. In addition, after finishing the dispersion, a gathering algorithm guides the sensors to round up to a single place for collection. It is noteworthy that both algorithms are synchronous which means that all sensors run algorithms in parallel at the same time. Moreover, our algorithms allow the sensors to avert obstacles in their path of movement. As cellular automaton functions depend on the local information about the network strictly, they are suitable for MWSN in practice. We evaluate the performance of our algorithm based on some defined metrics i.e., coverage, strongly connected coverage. We find that our dispersion algorithm maintains better coverage than state-of-the-art algorithm. Furthermore, in case of synchronous gathering, sensors get disconnected for some cases to form multiple clusters while using state-of-the-art algorithm, but our proposed gathering algorithm is always able to provide the connectivity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12083-018-0656-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136039", 
            "issn": [
              "1936-6442", 
              "1936-6450"
            ], 
            "name": "Peer-to-Peer Networking and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Connectivity preserving obstacle avoidance localized motion planning algorithms for mobile wireless sensor networks", 
        "pagination": "647-659", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa5b5487d602bd41be1ab84f3614dee8a8637e420c7939985f4e31fca6511d5f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12083-018-0656-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103790915"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12083-018-0656-y", 
          "https://app.dimensions.ai/details/publication/pub.1103790915"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12083-018-0656-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0656-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0656-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0656-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0656-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12083-018-0656-y schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N950487961aa7400ba892ebbfb6fd9be0
    4 schema:citation sg:pub.10.1007/978-3-319-49001-4_3
    5 sg:pub.10.1007/978-3-319-69084-1_23
    6 sg:pub.10.1007/978-3-319-70836-2_16
    7 sg:pub.10.1007/978-3-642-32894-7_20
    8 sg:pub.10.1007/s12083-016-0442-7
    9 https://doi.org/10.1016/j.adhoc.2016.03.004
    10 https://doi.org/10.1016/j.jda.2015.10.005
    11 https://doi.org/10.1016/j.tcs.2005.01.001
    12 https://doi.org/10.1049/iet-com.2016.1264
    13 https://doi.org/10.1080/17445760.2013.809082
    14 https://doi.org/10.1080/17445760.2017.1419242
    15 https://doi.org/10.1109/anss.2005.40
    16 https://doi.org/10.1109/cdc.2006.377220
    17 https://doi.org/10.1109/dcoss.2012.32
    18 https://doi.org/10.1109/iccas.2013.6704167
    19 https://doi.org/10.1109/ipdps.2008.4536245
    20 https://doi.org/10.1109/ipsn.2008.14
    21 https://doi.org/10.1109/isic.1995.525098
    22 https://doi.org/10.1109/milcom.2007.4455216
    23 https://doi.org/10.1109/scored.2013.7002637
    24 https://doi.org/10.1109/tvt.2015.2498281
    25 https://doi.org/10.1109/twc.2013.121813.130198
    26 https://doi.org/10.1109/wcnc.2012.6214185
    27 https://doi.org/10.1109/wcnc.2015.7127664
    28 https://doi.org/10.1109/wcnc.2017.7925559
    29 https://doi.org/10.1145/1641776.1641777
    30 https://doi.org/10.1145/1989493.1989515
    31 https://doi.org/10.1145/2529973
    32 https://doi.org/10.1587/transcom.e98.b.1294
    33 https://doi.org/10.2316/p.2011.735-089
    34 https://doi.org/10.3182/20130925-2-de-4044.00034
    35 https://doi.org/10.5120/1767-2424
    36 schema:datePublished 2019-05
    37 schema:datePublishedReg 2019-05-01
    38 schema:description Mobile wireless sensor networks (MWSN) are better in terms of coverage and it plays an important role in ubiquitous wireless networks. We design Cellular Automaton (CA) based localized motion planning algorithms for mobile wireless sensors. We propose cellular automaton based algorithms for both dispersion and gathering problems. The dispersion algorithm is intended for self-deployment purpose with the goal of increasing the sensing coverage of the network. We apply a probabilistic approach that maximizes the network coverage as well as maintains the connectivity of the network. In addition, after finishing the dispersion, a gathering algorithm guides the sensors to round up to a single place for collection. It is noteworthy that both algorithms are synchronous which means that all sensors run algorithms in parallel at the same time. Moreover, our algorithms allow the sensors to avert obstacles in their path of movement. As cellular automaton functions depend on the local information about the network strictly, they are suitable for MWSN in practice. We evaluate the performance of our algorithm based on some defined metrics i.e., coverage, strongly connected coverage. We find that our dispersion algorithm maintains better coverage than state-of-the-art algorithm. Furthermore, in case of synchronous gathering, sensors get disconnected for some cases to form multiple clusters while using state-of-the-art algorithm, but our proposed gathering algorithm is always able to provide the connectivity.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N1748d06f6b7b44e2bbe703f6eb359bd2
    43 N65a44b131e474901a463bd54f2610d3e
    44 sg:journal.1136039
    45 schema:name Connectivity preserving obstacle avoidance localized motion planning algorithms for mobile wireless sensor networks
    46 schema:pagination 647-659
    47 schema:productId N38c11baf3ad14456956cf003f7990384
    48 N4ec1ca9e40244a729913bfa00572491f
    49 Nae9f73f8f419440daf8f7597b08209f3
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103790915
    51 https://doi.org/10.1007/s12083-018-0656-y
    52 schema:sdDatePublished 2019-04-11T12:58
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N6a17b7e888c34fa29cf54c8c9866877b
    55 schema:url https://link.springer.com/10.1007%2Fs12083-018-0656-y
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1748d06f6b7b44e2bbe703f6eb359bd2 schema:issueNumber 3
    60 rdf:type schema:PublicationIssue
    61 N38c11baf3ad14456956cf003f7990384 schema:name readcube_id
    62 schema:value aa5b5487d602bd41be1ab84f3614dee8a8637e420c7939985f4e31fca6511d5f
    63 rdf:type schema:PropertyValue
    64 N4ec1ca9e40244a729913bfa00572491f schema:name doi
    65 schema:value 10.1007/s12083-018-0656-y
    66 rdf:type schema:PropertyValue
    67 N65a44b131e474901a463bd54f2610d3e schema:volumeNumber 12
    68 rdf:type schema:PublicationVolume
    69 N6a17b7e888c34fa29cf54c8c9866877b schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N950487961aa7400ba892ebbfb6fd9be0 rdf:first sg:person.012774047052.39
    72 rdf:rest Na499e7f54b4845d293b09293ba9a7ff1
    73 N960638ed29ad437ab0f175a68270087b rdf:first sg:person.010612345717.30
    74 rdf:rest rdf:nil
    75 Na499e7f54b4845d293b09293ba9a7ff1 rdf:first sg:person.011325356323.14
    76 rdf:rest N960638ed29ad437ab0f175a68270087b
    77 Nae9f73f8f419440daf8f7597b08209f3 schema:name dimensions_id
    78 schema:value pub.1103790915
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Technology
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Communications Technologies
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136039 schema:issn 1936-6442
    87 1936-6450
    88 schema:name Peer-to-Peer Networking and Applications
    89 rdf:type schema:Periodical
    90 sg:person.010612345717.30 schema:affiliation https://www.grid.ac/institutes/grid.258900.6
    91 schema:familyName Choudhury
    92 schema:givenName Salimur
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010612345717.30
    94 rdf:type schema:Person
    95 sg:person.011325356323.14 schema:affiliation https://www.grid.ac/institutes/grid.443073.7
    96 schema:familyName Hussain
    97 schema:givenName Faisal
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325356323.14
    99 rdf:type schema:Person
    100 sg:person.012774047052.39 schema:affiliation https://www.grid.ac/institutes/grid.443003.0
    101 schema:familyName Hassan
    102 schema:givenName Md. Yeakub
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774047052.39
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-3-319-49001-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084906514
    106 https://doi.org/10.1007/978-3-319-49001-4_3
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-319-69084-1_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092100621
    109 https://doi.org/10.1007/978-3-319-69084-1_23
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-319-70836-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099747271
    112 https://doi.org/10.1007/978-3-319-70836-2_16
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-32894-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022297830
    115 https://doi.org/10.1007/978-3-642-32894-7_20
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s12083-016-0442-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005007249
    118 https://doi.org/10.1007/s12083-016-0442-7
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.adhoc.2016.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026832440
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.jda.2015.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011597230
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.tcs.2005.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013680842
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1049/iet-com.2016.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084821582
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1080/17445760.2013.809082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025484760
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1080/17445760.2017.1419242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100554571
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/anss.2005.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093799549
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/cdc.2006.377220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094924674
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/dcoss.2012.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093307940
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/iccas.2013.6704167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094914067
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/ipdps.2008.4536245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094122336
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/ipsn.2008.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094074149
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/isic.1995.525098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093902564
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/milcom.2007.4455216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094822620
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/scored.2013.7002637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093525459
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/tvt.2015.2498281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061823422
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/twc.2013.121813.130198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061829004
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/wcnc.2012.6214185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094153201
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/wcnc.2015.7127664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093461759
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/wcnc.2017.7925559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093227928
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1145/1641776.1641777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053595548
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1145/1989493.1989515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040233627
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1145/2529973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014028991
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1587/transcom.e98.b.1294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068087178
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.2316/p.2011.735-089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099200482
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.3182/20130925-2-de-4044.00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012382070
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.5120/1767-2424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072599939
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.258900.6 schema:alternateName Lakehead University
    175 schema:name Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.443003.0 schema:alternateName Green University of Bangladesh
    178 schema:name Department of Computer Science and Engineering, Green University of Bangladesh, Dhaka, Bangladesh
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.443073.7 schema:alternateName Islamic University of Technology
    181 schema:name Department of Computer Science and Engineering, Islamic University of Technology, Gazipur, Bangladesh
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...