An algorithm for calculating coverage rate of WSNs based on geometry decomposition approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Xu Hui, Wang Bailing, Song Jia, Hong Haohan, Zhang Xiaolei

ABSTRACT

Coverage rate is an important parameter in WSNs, which the higher the coverage rate, the better the ability of the network to fulfill its monitoring function. Aiming at the shortcoming of the great error in the calculation for network coverage rate, we propose an algorithm for calculating coverage rate based on geometry decomposition approach (CRGD), a kind of accurate calculating method. Against the random WSNs in non-border area, it segments the irregular coverage region into several regular bows and triangles by geometry decomposition approach, which areas can be calculated conveniently. Then, it accumulates the areas and gets the coverage rate finally. According to the experimental results and analysis, CRGD’s precision can be over 99%, which make the algorithm meet the requirements of practical application satisfactorily. More... »

PAGES

568-576

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12083-018-0653-1

DOI

http://dx.doi.org/10.1007/s12083-018-0653-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104370071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology (Weihai), Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hui", 
        "givenName": "Xu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology (Weihai), Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bailing", 
        "givenName": "Wang", 
        "id": "sg:person.014552773255.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552773255.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology (Weihai), Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Song", 
        "id": "sg:person.010240243455.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240243455.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology (Weihai), Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haohan", 
        "givenName": "Hong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Harbin Institute of Technology (Weihai), Weihai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiaolei", 
        "givenName": "Zhang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11425-010-4156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028816226", 
          "https://doi.org/10.1007/s11425-010-4156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203323687.ch28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2016.2645138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061628613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2014.2300181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061822156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2015.2498281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061823422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1004.2008.01497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071316299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2003.1208965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093779293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccn.2007.4317909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094315976"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Coverage rate is an important parameter in WSNs, which the higher the coverage rate, the better the ability of the network to fulfill its monitoring function. Aiming at the shortcoming of the great error in the calculation for network coverage rate, we propose an algorithm for calculating coverage rate based on geometry decomposition approach (CRGD), a kind of accurate calculating method. Against the random WSNs in non-border area, it segments the irregular coverage region into several regular bows and triangles by geometry decomposition approach, which areas can be calculated conveniently. Then, it accumulates the areas and gets the coverage rate finally. According to the experimental results and analysis, CRGD\u2019s precision can be over 99%, which make the algorithm meet the requirements of practical application satisfactorily.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12083-018-0653-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136039", 
        "issn": [
          "1936-6442", 
          "1936-6450"
        ], 
        "name": "Peer-to-Peer Networking and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "An algorithm for calculating coverage rate of WSNs based on geometry decomposition approach", 
    "pagination": "568-576", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd6e419d38c3606dd29238e720b721af07587defc64265f3c60909b714dc6f38"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12083-018-0653-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104370071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12083-018-0653-1", 
      "https://app.dimensions.ai/details/publication/pub.1104370071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71714_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12083-018-0653-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0653-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0653-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0653-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0653-1'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12083-018-0653-1 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nefd8685ef0264d229ab459a5238504b4
4 schema:citation sg:pub.10.1007/s11425-010-4156-7
5 https://doi.org/10.1109/icccn.2007.4317909
6 https://doi.org/10.1109/infcom.2003.1208965
7 https://doi.org/10.1109/tie.2016.2645138
8 https://doi.org/10.1109/tvt.2014.2300181
9 https://doi.org/10.1109/tvt.2015.2498281
10 https://doi.org/10.1201/9780203323687.ch28
11 https://doi.org/10.3724/sp.j.1004.2008.01497
12 schema:datePublished 2019-05
13 schema:datePublishedReg 2019-05-01
14 schema:description Coverage rate is an important parameter in WSNs, which the higher the coverage rate, the better the ability of the network to fulfill its monitoring function. Aiming at the shortcoming of the great error in the calculation for network coverage rate, we propose an algorithm for calculating coverage rate based on geometry decomposition approach (CRGD), a kind of accurate calculating method. Against the random WSNs in non-border area, it segments the irregular coverage region into several regular bows and triangles by geometry decomposition approach, which areas can be calculated conveniently. Then, it accumulates the areas and gets the coverage rate finally. According to the experimental results and analysis, CRGD’s precision can be over 99%, which make the algorithm meet the requirements of practical application satisfactorily.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nd7de7b15023d4fe09e83925eb91ee310
19 Nf527261b97814505ad885408bb7869b5
20 sg:journal.1136039
21 schema:name An algorithm for calculating coverage rate of WSNs based on geometry decomposition approach
22 schema:pagination 568-576
23 schema:productId N1e33cb6b56a047f285eb9de1debacdf6
24 N29057f1f420a4426a1c5eb8ea74346ab
25 Ne4eff3a7375a4a3dba8c683e3df9208f
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104370071
27 https://doi.org/10.1007/s12083-018-0653-1
28 schema:sdDatePublished 2019-04-11T13:01
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N34fb669803ef481b9868347cecaa7c7d
31 schema:url https://link.springer.com/10.1007%2Fs12083-018-0653-1
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N16f04e4e84b1490289ce3f66abb25a92 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
36 schema:familyName Haohan
37 schema:givenName Hong
38 rdf:type schema:Person
39 N1e33cb6b56a047f285eb9de1debacdf6 schema:name doi
40 schema:value 10.1007/s12083-018-0653-1
41 rdf:type schema:PropertyValue
42 N29057f1f420a4426a1c5eb8ea74346ab schema:name readcube_id
43 schema:value cd6e419d38c3606dd29238e720b721af07587defc64265f3c60909b714dc6f38
44 rdf:type schema:PropertyValue
45 N34fb669803ef481b9868347cecaa7c7d schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4dd36762f4ac4b659c4900ed9f445fd7 rdf:first N16f04e4e84b1490289ce3f66abb25a92
48 rdf:rest Na17e242838464a119731695140f41bf5
49 N65e109b9f96247e7b5564b2468a855fb rdf:first sg:person.014552773255.90
50 rdf:rest N7c5c8475841543fa96b5b38b6d7240ae
51 N7c5c8475841543fa96b5b38b6d7240ae rdf:first sg:person.010240243455.27
52 rdf:rest N4dd36762f4ac4b659c4900ed9f445fd7
53 N8e0debcc8fd145a4bb8fc43b89080939 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
54 schema:familyName Hui
55 schema:givenName Xu
56 rdf:type schema:Person
57 Na17e242838464a119731695140f41bf5 rdf:first Na96efe61a012421da42b2f1d0e1f34ff
58 rdf:rest rdf:nil
59 Na96efe61a012421da42b2f1d0e1f34ff schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
60 schema:familyName Xiaolei
61 schema:givenName Zhang
62 rdf:type schema:Person
63 Nd7de7b15023d4fe09e83925eb91ee310 schema:volumeNumber 12
64 rdf:type schema:PublicationVolume
65 Ne4eff3a7375a4a3dba8c683e3df9208f schema:name dimensions_id
66 schema:value pub.1104370071
67 rdf:type schema:PropertyValue
68 Nefd8685ef0264d229ab459a5238504b4 rdf:first N8e0debcc8fd145a4bb8fc43b89080939
69 rdf:rest N65e109b9f96247e7b5564b2468a855fb
70 Nf527261b97814505ad885408bb7869b5 schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
73 schema:name Technology
74 rdf:type schema:DefinedTerm
75 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
76 schema:name Communications Technologies
77 rdf:type schema:DefinedTerm
78 sg:journal.1136039 schema:issn 1936-6442
79 1936-6450
80 schema:name Peer-to-Peer Networking and Applications
81 rdf:type schema:Periodical
82 sg:person.010240243455.27 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
83 schema:familyName Jia
84 schema:givenName Song
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240243455.27
86 rdf:type schema:Person
87 sg:person.014552773255.90 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
88 schema:familyName Bailing
89 schema:givenName Wang
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552773255.90
91 rdf:type schema:Person
92 sg:pub.10.1007/s11425-010-4156-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028816226
93 https://doi.org/10.1007/s11425-010-4156-7
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/icccn.2007.4317909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094315976
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/infcom.2003.1208965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093779293
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tie.2016.2645138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061628613
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tvt.2014.2300181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061822156
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tvt.2015.2498281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061823422
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1201/9780203323687.ch28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802781
106 rdf:type schema:CreativeWork
107 https://doi.org/10.3724/sp.j.1004.2008.01497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071316299
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
110 schema:name Harbin Institute of Technology (Weihai), Weihai, China
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...