Two-tiered relay node placement for WSN-based home health monitoring system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02-20

AUTHORS

Yanjun Li, Chung Shue Chen, Kaikai Chi, Jianhui Zhang

ABSTRACT

Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k ≥ 3) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles’ effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today’s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes. More... »

PAGES

589-603

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0

DOI

http://dx.doi.org/10.1007/s12083-018-0638-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101140558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanjun", 
        "id": "sg:person.010511233633.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511233633.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LINCS, 75013, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Nokia Bell-Labs, 91620, Nozay, France", 
            "LINCS, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chung Shue", 
        "id": "sg:person.015755121612.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755121612.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Kaikai", 
        "id": "sg:person.016477140741.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477140741.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jianhui", 
        "id": "sg:person.011155252421.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155252421.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-12817-7_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024094174", 
          "https://doi.org/10.1007/978-3-319-12817-7_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008384012064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413123", 
          "https://doi.org/10.1023/a:1008384012064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-014-9823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017574924", 
          "https://doi.org/10.1007/s10878-014-9823-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-006-0724-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045151429", 
          "https://doi.org/10.1007/s11276-006-0724-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042846639", 
          "https://doi.org/10.1007/11533719_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-007-9124-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028949092", 
          "https://doi.org/10.1007/s10878-007-9124-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-20", 
    "datePublishedReg": "2018-02-20", 
    "description": "Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k \u2265\u20093) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles\u2019 effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today\u2019s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12083-018-0638-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4521863", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7739027", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8297915", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8298133", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8311166", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136039", 
        "issn": [
          "1936-6442", 
          "1936-6450"
        ], 
        "name": "Peer-to-Peer Networking and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "WSN-based monitoring system", 
      "monitoring system", 
      "indoor deployment", 
      "home health monitoring system", 
      "sensor network system", 
      "relay nodes", 
      "health monitoring system", 
      "radio model", 
      "extensive simulations", 
      "network system", 
      "polynomial time", 
      "placement strategy", 
      "network connectivity", 
      "transmission power", 
      "localization requirements", 
      "indoor environment", 
      "number of relays", 
      "system performance", 
      "health monitoring", 
      "random placement", 
      "nodes", 
      "radio propagation", 
      "inherent nature", 
      "relay", 
      "data collection", 
      "WSN", 
      "best location", 
      "grid size", 
      "system", 
      "algorithm", 
      "deployment", 
      "NP", 
      "requirements", 
      "connectivity", 
      "environment", 
      "obstacles", 
      "performance", 
      "simulations", 
      "collection", 
      "monitoring", 
      "method", 
      "need", 
      "model", 
      "placement", 
      "results", 
      "location", 
      "dominating", 
      "power", 
      "number", 
      "strategies", 
      "time", 
      "home", 
      "account", 
      "propagation", 
      "ORPA", 
      "nature", 
      "size", 
      "comparison", 
      "impact", 
      "problem", 
      "effect", 
      "paper", 
      "idealistic disk radio model", 
      "disk radio model", 
      "efficient greedy algorithm ORPA", 
      "greedy algorithm ORPA", 
      "algorithm ORPA", 
      "two-stage placement strategies", 
      "today\u2019s indoor deployment", 
      "practical WSN-based monitoring system", 
      "minimal relay nodes", 
      "Two-tiered relay"
    ], 
    "name": "Two-tiered relay node placement for WSN-based home health monitoring system", 
    "pagination": "589-603", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101140558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12083-018-0638-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12083-018-0638-0", 
      "https://app.dimensions.ai/details/publication/pub.1101140558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_768.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12083-018-0638-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      22 PREDICATES      103 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12083-018-0638-0 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N796c25854dfe48aab323b230a0d7e1ee
4 schema:citation sg:pub.10.1007/11533719_25
5 sg:pub.10.1007/978-3-319-12817-7_15
6 sg:pub.10.1007/s10878-007-9124-y
7 sg:pub.10.1007/s10878-014-9823-0
8 sg:pub.10.1007/s11276-006-0724-8
9 sg:pub.10.1023/a:1008384012064
10 schema:datePublished 2018-02-20
11 schema:datePublishedReg 2018-02-20
12 schema:description Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k ≥ 3) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles’ effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today’s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N20c5f5b7076f43dc92417c1531e3dd6d
17 N81b8d87ce80046ba828f013ce3f6262b
18 sg:journal.1136039
19 schema:keywords NP
20 ORPA
21 Two-tiered relay
22 WSN
23 WSN-based monitoring system
24 account
25 algorithm
26 algorithm ORPA
27 best location
28 collection
29 comparison
30 connectivity
31 data collection
32 deployment
33 disk radio model
34 dominating
35 effect
36 efficient greedy algorithm ORPA
37 environment
38 extensive simulations
39 greedy algorithm ORPA
40 grid size
41 health monitoring
42 health monitoring system
43 home
44 home health monitoring system
45 idealistic disk radio model
46 impact
47 indoor deployment
48 indoor environment
49 inherent nature
50 localization requirements
51 location
52 method
53 minimal relay nodes
54 model
55 monitoring
56 monitoring system
57 nature
58 need
59 network connectivity
60 network system
61 nodes
62 number
63 number of relays
64 obstacles
65 paper
66 performance
67 placement
68 placement strategy
69 polynomial time
70 power
71 practical WSN-based monitoring system
72 problem
73 propagation
74 radio model
75 radio propagation
76 random placement
77 relay
78 relay nodes
79 requirements
80 results
81 sensor network system
82 simulations
83 size
84 strategies
85 system
86 system performance
87 time
88 today’s indoor deployment
89 transmission power
90 two-stage placement strategies
91 schema:name Two-tiered relay node placement for WSN-based home health monitoring system
92 schema:pagination 589-603
93 schema:productId N0cad2a48579c46b58126c124dde60a29
94 Nb9ab32298a494c2387681b1befb5d81f
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101140558
96 https://doi.org/10.1007/s12083-018-0638-0
97 schema:sdDatePublished 2021-12-01T19:41
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nf93c8934e01e4e8299ba9bf7b2352b62
100 schema:url https://doi.org/10.1007/s12083-018-0638-0
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N0cad2a48579c46b58126c124dde60a29 schema:name doi
105 schema:value 10.1007/s12083-018-0638-0
106 rdf:type schema:PropertyValue
107 N20c5f5b7076f43dc92417c1531e3dd6d schema:volumeNumber 12
108 rdf:type schema:PublicationVolume
109 N34400b65a71a485ab7a50a1c68dadfdb rdf:first sg:person.015755121612.49
110 rdf:rest N759bc384991143cab979058ba08359f7
111 N759bc384991143cab979058ba08359f7 rdf:first sg:person.016477140741.30
112 rdf:rest Nb1e808c860ad4c1097f91ea435896a9b
113 N796c25854dfe48aab323b230a0d7e1ee rdf:first sg:person.010511233633.61
114 rdf:rest N34400b65a71a485ab7a50a1c68dadfdb
115 N81b8d87ce80046ba828f013ce3f6262b schema:issueNumber 3
116 rdf:type schema:PublicationIssue
117 Nb1e808c860ad4c1097f91ea435896a9b rdf:first sg:person.011155252421.78
118 rdf:rest rdf:nil
119 Nb9ab32298a494c2387681b1befb5d81f schema:name dimensions_id
120 schema:value pub.1101140558
121 rdf:type schema:PropertyValue
122 Nf93c8934e01e4e8299ba9bf7b2352b62 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
125 schema:name Technology
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
128 schema:name Communications Technologies
129 rdf:type schema:DefinedTerm
130 sg:grant.4521863 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
131 rdf:type schema:MonetaryGrant
132 sg:grant.7739027 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
133 rdf:type schema:MonetaryGrant
134 sg:grant.8297915 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
135 rdf:type schema:MonetaryGrant
136 sg:grant.8298133 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
137 rdf:type schema:MonetaryGrant
138 sg:grant.8311166 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
139 rdf:type schema:MonetaryGrant
140 sg:journal.1136039 schema:issn 1936-6442
141 1936-6450
142 schema:name Peer-to-Peer Networking and Applications
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.010511233633.61 schema:affiliation grid-institutes:grid.469325.f
146 schema:familyName Li
147 schema:givenName Yanjun
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511233633.61
149 rdf:type schema:Person
150 sg:person.011155252421.78 schema:affiliation grid-institutes:grid.411963.8
151 schema:familyName Zhang
152 schema:givenName Jianhui
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155252421.78
154 rdf:type schema:Person
155 sg:person.015755121612.49 schema:affiliation grid-institutes:None
156 schema:familyName Chen
157 schema:givenName Chung Shue
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755121612.49
159 rdf:type schema:Person
160 sg:person.016477140741.30 schema:affiliation grid-institutes:grid.469325.f
161 schema:familyName Chi
162 schema:givenName Kaikai
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477140741.30
164 rdf:type schema:Person
165 sg:pub.10.1007/11533719_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042846639
166 https://doi.org/10.1007/11533719_25
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-3-319-12817-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024094174
169 https://doi.org/10.1007/978-3-319-12817-7_15
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10878-007-9124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028949092
172 https://doi.org/10.1007/s10878-007-9124-y
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10878-014-9823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017574924
175 https://doi.org/10.1007/s10878-014-9823-0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11276-006-0724-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045151429
178 https://doi.org/10.1007/s11276-006-0724-8
179 rdf:type schema:CreativeWork
180 sg:pub.10.1023/a:1008384012064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413123
181 https://doi.org/10.1023/a:1008384012064
182 rdf:type schema:CreativeWork
183 grid-institutes:None schema:alternateName LINCS, 75013, Paris, France
184 schema:name LINCS, 75013, Paris, France
185 The Nokia Bell-Labs, 91620, Nozay, France
186 rdf:type schema:Organization
187 grid-institutes:grid.411963.8 schema:alternateName School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
188 schema:name School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
189 rdf:type schema:Organization
190 grid-institutes:grid.469325.f schema:alternateName School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China
191 schema:name School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...