Two-tiered relay node placement for WSN-based home health monitoring system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Yanjun Li, Chung Shue Chen, Kaikai Chi, Jianhui Zhang

ABSTRACT

Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k ≥ 3) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles’ effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today’s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes. More... »

PAGES

589-603

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0

DOI

http://dx.doi.org/10.1007/s12083-018-0638-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101140558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanjun", 
        "id": "sg:person.010511233633.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511233633.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "The Nokia Bell-Labs, 91620, Nozay, France", 
            "LINCS, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chung Shue", 
        "id": "sg:person.015755121612.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755121612.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chi", 
        "givenName": "Kaikai", 
        "id": "sg:person.016477140741.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477140741.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jianhui", 
        "id": "sg:person.015703675647.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015703675647.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s8106674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000077969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-014-9823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017574924", 
          "https://doi.org/10.1007/s10878-014-9823-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1240226.1240227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018115441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12817-7_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024094174", 
          "https://doi.org/10.1007/978-3-319-12817-7_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-007-9124-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028949092", 
          "https://doi.org/10.1007/s10878-007-9124-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2529988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203323687.ch28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comcom.2012.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036224421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2016.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040120641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2016.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040120641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2016.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040120641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042846639", 
          "https://doi.org/10.1007/11533719_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11533719_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042846639", 
          "https://doi.org/10.1007/11533719_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2007.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042994351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11276-006-0724-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045151429", 
          "https://doi.org/10.1007/s11276-006-0724-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046837351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnca.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046837351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(98)00201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047101390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1791212.1791252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048145912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1374618.1374672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050358772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1374618.1374631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050441122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008384012064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052413123", 
          "https://doi.org/10.1023/a:1008384012064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2011.2182341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061322069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2456931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061324173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2007.250629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmc.2011.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061690647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2005.863478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2009.2012474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2009.2033273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061715173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2017.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084522469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2017.2658598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084605970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2017.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086113370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2010.5462076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093285762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2003.1208944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093436011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dcoss.2012.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093712555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hpsr.2004.1303479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094725911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/milcom.2007.4454774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094948115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccn.2004.1401672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095704674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k \u2265 3) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles\u2019 effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today\u2019s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12083-018-0638-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7739027", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4521863", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136039", 
        "issn": [
          "1936-6442", 
          "1936-6450"
        ], 
        "name": "Peer-to-Peer Networking and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Two-tiered relay node placement for WSN-based home health monitoring system", 
    "pagination": "589-603", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5baa11c689b05b5be10384a4515c1e82e0826a20942a63a3495ca172c61a7e80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12083-018-0638-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101140558"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12083-018-0638-0", 
      "https://app.dimensions.ai/details/publication/pub.1101140558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71680_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12083-018-0638-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12083-018-0638-0'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12083-018-0638-0 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N5d0ccde82952449a959ce27b0cc6cce6
4 schema:citation sg:pub.10.1007/11533719_25
5 sg:pub.10.1007/978-3-319-12817-7_15
6 sg:pub.10.1007/s10878-007-9124-y
7 sg:pub.10.1007/s10878-014-9823-0
8 sg:pub.10.1007/s11276-006-0724-8
9 sg:pub.10.1023/a:1008384012064
10 https://doi.org/10.1016/j.adhoc.2017.04.001
11 https://doi.org/10.1016/j.adhoc.2017.06.004
12 https://doi.org/10.1016/j.comcom.2012.08.021
13 https://doi.org/10.1016/j.comnet.2016.11.014
14 https://doi.org/10.1016/j.jnca.2016.04.025
15 https://doi.org/10.1016/j.tcs.2007.04.035
16 https://doi.org/10.1016/s0020-0190(98)00201-4
17 https://doi.org/10.1109/dcoss.2012.62
18 https://doi.org/10.1109/hpsr.2004.1303479
19 https://doi.org/10.1109/icccn.2004.1401672
20 https://doi.org/10.1109/infcom.2003.1208944
21 https://doi.org/10.1109/infcom.2010.5462076
22 https://doi.org/10.1109/jsen.2011.2182341
23 https://doi.org/10.1109/jsen.2015.2456931
24 https://doi.org/10.1109/milcom.2007.4454774
25 https://doi.org/10.1109/tc.2007.250629
26 https://doi.org/10.1109/tmc.2011.126
27 https://doi.org/10.1109/tnet.2005.863478
28 https://doi.org/10.1109/tnet.2009.2012474
29 https://doi.org/10.1109/tnet.2009.2033273
30 https://doi.org/10.1109/twc.2017.2658598
31 https://doi.org/10.1145/1240226.1240227
32 https://doi.org/10.1145/1374618.1374631
33 https://doi.org/10.1145/1374618.1374672
34 https://doi.org/10.1145/1791212.1791252
35 https://doi.org/10.1145/2529988
36 https://doi.org/10.1201/9780203323687.ch28
37 https://doi.org/10.3390/s8106674
38 schema:datePublished 2019-05
39 schema:datePublishedReg 2019-05-01
40 schema:description Motivated by the needs of health monitoring at home (or a senior center) using a sensor network system, we study the problem of how to place the relay nodes so that the data collection and localization requirements of the monitoring system can be satisfied. By exploiting the inherent nature of the problem, we model it as finding a minimum connected k-dominating (k ≥ 3) set. Instead of using an idealistic disk radio model, we explicitly take into account the obstacles’ effect on the radio propagation in an indoor environment. We prove that the problem is NP-hard and propose an efficient greedy algorithm ORPA (Optimal Relay Placement Algorithm) to compute in polynomial time the best locations to place the relays. Results of extensive simulations have shown that by using our proposed algorithm ORPA, the number of relays required can be substantially reduced in comparison to the random placement and two-stage placement strategies. We also study the impact of the transmission power and the grid size on the algorithm and system performance. The result and method presented in the paper is useful to today’s indoor deployment of practical WSN-based monitoring system and to ensure network connectivity with minimal relay nodes.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N00d31a661c3b4e56bcbad527faf49f6f
45 N318f55aee4f84626bae237ab9234cea7
46 sg:journal.1136039
47 schema:name Two-tiered relay node placement for WSN-based home health monitoring system
48 schema:pagination 589-603
49 schema:productId N0322bb6760d84787aae89b0f149903e5
50 Naf67a53296e64112a051acef11319454
51 Ne6ed8782b8fa4fb0bc6c30547654076b
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101140558
53 https://doi.org/10.1007/s12083-018-0638-0
54 schema:sdDatePublished 2019-04-11T12:58
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ne9e748a9b97b487ea3392c86b952d88c
57 schema:url https://link.springer.com/10.1007%2Fs12083-018-0638-0
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N00d31a661c3b4e56bcbad527faf49f6f schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 N0322bb6760d84787aae89b0f149903e5 schema:name dimensions_id
64 schema:value pub.1101140558
65 rdf:type schema:PropertyValue
66 N17aca0683f8747a481ee916938073b76 rdf:first sg:person.015703675647.26
67 rdf:rest rdf:nil
68 N318f55aee4f84626bae237ab9234cea7 schema:volumeNumber 12
69 rdf:type schema:PublicationVolume
70 N5d0ccde82952449a959ce27b0cc6cce6 rdf:first sg:person.010511233633.61
71 rdf:rest N66e9fc8cd78a409dbe9e8dbf1f1c2848
72 N66e9fc8cd78a409dbe9e8dbf1f1c2848 rdf:first sg:person.015755121612.49
73 rdf:rest N81d74c0908294d5d9b28ee146432d6e6
74 N81d74c0908294d5d9b28ee146432d6e6 rdf:first sg:person.016477140741.30
75 rdf:rest N17aca0683f8747a481ee916938073b76
76 N8b543654c2174f388aa33ac68328fa1c schema:name LINCS, 75013, Paris, France
77 The Nokia Bell-Labs, 91620, Nozay, France
78 rdf:type schema:Organization
79 Naf67a53296e64112a051acef11319454 schema:name doi
80 schema:value 10.1007/s12083-018-0638-0
81 rdf:type schema:PropertyValue
82 Ne6ed8782b8fa4fb0bc6c30547654076b schema:name readcube_id
83 schema:value 5baa11c689b05b5be10384a4515c1e82e0826a20942a63a3495ca172c61a7e80
84 rdf:type schema:PropertyValue
85 Ne9e748a9b97b487ea3392c86b952d88c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
88 schema:name Technology
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
91 schema:name Communications Technologies
92 rdf:type schema:DefinedTerm
93 sg:grant.4521863 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
94 rdf:type schema:MonetaryGrant
95 sg:grant.7739027 http://pending.schema.org/fundedItem sg:pub.10.1007/s12083-018-0638-0
96 rdf:type schema:MonetaryGrant
97 sg:journal.1136039 schema:issn 1936-6442
98 1936-6450
99 schema:name Peer-to-Peer Networking and Applications
100 rdf:type schema:Periodical
101 sg:person.010511233633.61 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
102 schema:familyName Li
103 schema:givenName Yanjun
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511233633.61
105 rdf:type schema:Person
106 sg:person.015703675647.26 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
107 schema:familyName Zhang
108 schema:givenName Jianhui
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015703675647.26
110 rdf:type schema:Person
111 sg:person.015755121612.49 schema:affiliation N8b543654c2174f388aa33ac68328fa1c
112 schema:familyName Chen
113 schema:givenName Chung Shue
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755121612.49
115 rdf:type schema:Person
116 sg:person.016477140741.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
117 schema:familyName Chi
118 schema:givenName Kaikai
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477140741.30
120 rdf:type schema:Person
121 sg:pub.10.1007/11533719_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042846639
122 https://doi.org/10.1007/11533719_25
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-319-12817-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024094174
125 https://doi.org/10.1007/978-3-319-12817-7_15
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10878-007-9124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028949092
128 https://doi.org/10.1007/s10878-007-9124-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10878-014-9823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017574924
131 https://doi.org/10.1007/s10878-014-9823-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11276-006-0724-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045151429
134 https://doi.org/10.1007/s11276-006-0724-8
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1008384012064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052413123
137 https://doi.org/10.1023/a:1008384012064
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.adhoc.2017.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084522469
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.adhoc.2017.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086113370
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.comcom.2012.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036224421
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.comnet.2016.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040120641
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jnca.2016.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046837351
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.tcs.2007.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042994351
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0020-0190(98)00201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047101390
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/dcoss.2012.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093712555
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/hpsr.2004.1303479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094725911
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icccn.2004.1401672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095704674
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/infcom.2003.1208944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093436011
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/infcom.2010.5462076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093285762
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/jsen.2011.2182341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322069
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/jsen.2015.2456931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061324173
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/milcom.2007.4454774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094948115
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tc.2007.250629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534439
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tmc.2011.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061690647
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tnet.2005.863478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714626
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tnet.2009.2012474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715071
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tnet.2009.2033273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061715173
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/twc.2017.2658598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084605970
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/1240226.1240227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018115441
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/1374618.1374631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050441122
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1374618.1374672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050358772
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1791212.1791252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048145912
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/2529988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029942249
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1201/9780203323687.ch28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802781
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3390/s8106674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000077969
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.411963.8 schema:alternateName Hangzhou Dianzi University
196 schema:name School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
199 schema:name School of Computer Science and Technology, Zhejiang University of Technology, 310023, Hangzhou, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...