An assessment of energy production efficiency activity: a spatial analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Luigi Aldieri, Concetto Paolo Vinci

ABSTRACT

The aim of this paper is to investigate the extent to which the environmental technological spillover effects on firms’ productivity are affected by the spatial dimension. To this end, we introduce a spatial Durbin model with additional endogenous variables for the energy production efficiency activity of large R&D-intensive firms located in three economic areas: the USA, Japan and Europe. To identify the technological proximity between the firms, we construct an original Mahalanobis environmental industry weight matrix, based on the construction of technological vectors for each firm, with European environmental patents distributed across more technology classes. The findings show a statistically negative impact of spatially distributed environmental spillovers on firms’ productivity in all the economic areas. More... »

PAGES

233-243

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12076-017-0196-8

DOI

http://dx.doi.org/10.1007/s12076-017-0196-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092815210


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Department of Economic and Statistical Sciences, University of Salerno, Fisciano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aldieri", 
        "givenName": "Luigi", 
        "id": "sg:person.013041442265.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013041442265.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Department of Economic and Statistical Sciences, University of Salerno, Fisciano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinci", 
        "givenName": "Concetto Paolo", 
        "id": "sg:person.010575775341.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575775341.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1995.tb00338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005958961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1995.tb00338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005958961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007707430416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017892115", 
          "https://doi.org/10.1023/a:1007707430416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01434278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023997530", 
          "https://doi.org/10.1007/bf01434278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09654310902778045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026809429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-2354.00027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-2354.00027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10438599.2013.788838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036761499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jeem.2000.1166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038029218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0095-0696(02)00053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040872132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0095-0696(02)00053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040872132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/reep/res016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046700239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10961-007-9065-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050741620", 
          "https://doi.org/10.1007/s10961-007-9065-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1086026616680683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053764498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1086026616680683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053764498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0491-168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056527331", 
          "https://doi.org/10.1038/scientificamerican0491-168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/pol.4.4.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064532158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3440244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070325125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2931340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090425566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3003321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102602495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "The aim of this paper is to investigate the extent to which the environmental technological spillover effects on firms\u2019 productivity are affected by the spatial dimension. To this end, we introduce a spatial Durbin model with additional endogenous variables for the energy production efficiency activity of large R&D-intensive firms located in three economic areas: the USA, Japan and Europe. To identify the technological proximity between the firms, we construct an original Mahalanobis environmental industry weight matrix, based on the construction of technological vectors for each firm, with European environmental patents distributed across more technology classes. The findings show a statistically negative impact of spatially distributed environmental spillovers on firms\u2019 productivity in all the economic areas.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12076-017-0196-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136188", 
        "issn": [
          "1864-4031", 
          "1864-404X"
        ], 
        "name": "Letters in Spatial and Resource Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "An assessment of energy production efficiency activity: a spatial analysis", 
    "pagination": "233-243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b3eb0d44c549db39f2233ff68903d900ac58fe2bcb5965dc848c6005a0e4ddb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12076-017-0196-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092815210"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12076-017-0196-8", 
      "https://app.dimensions.ai/details/publication/pub.1092815210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12076-017-0196-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12076-017-0196-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12076-017-0196-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12076-017-0196-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12076-017-0196-8'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12076-017-0196-8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nfe8f0aee0416441f82794873e7aadfc4
4 schema:citation sg:pub.10.1007/bf01434278
5 sg:pub.10.1007/s10961-007-9065-8
6 sg:pub.10.1023/a:1007707430416
7 sg:pub.10.1038/scientificamerican0491-168
8 https://doi.org/10.1006/jeem.2000.1166
9 https://doi.org/10.1016/s0095-0696(02)00053-0
10 https://doi.org/10.1080/09654310902778045
11 https://doi.org/10.1080/10438599.2013.788838
12 https://doi.org/10.1093/reep/res016
13 https://doi.org/10.1111/1468-2354.00027
14 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
15 https://doi.org/10.1177/1086026616680683
16 https://doi.org/10.1257/pol.4.4.125
17 https://doi.org/10.2139/ssrn.2931340
18 https://doi.org/10.2307/3003321
19 https://doi.org/10.2307/3440244
20 schema:datePublished 2018-10
21 schema:datePublishedReg 2018-10-01
22 schema:description The aim of this paper is to investigate the extent to which the environmental technological spillover effects on firms’ productivity are affected by the spatial dimension. To this end, we introduce a spatial Durbin model with additional endogenous variables for the energy production efficiency activity of large R&D-intensive firms located in three economic areas: the USA, Japan and Europe. To identify the technological proximity between the firms, we construct an original Mahalanobis environmental industry weight matrix, based on the construction of technological vectors for each firm, with European environmental patents distributed across more technology classes. The findings show a statistically negative impact of spatially distributed environmental spillovers on firms’ productivity in all the economic areas.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N8ec3fd584f6f468aada3d90fb988e485
27 Nd18a1355461a4925ac214c25f236ad6b
28 sg:journal.1136188
29 schema:name An assessment of energy production efficiency activity: a spatial analysis
30 schema:pagination 233-243
31 schema:productId N5ae394c4f9de48d592db69a89b3d8224
32 Nce5d6290294644bcb6b250e5ee8699f6
33 Nf15102e7f9bd4b20bc927bf65d5a0231
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092815210
35 https://doi.org/10.1007/s12076-017-0196-8
36 schema:sdDatePublished 2019-04-10T18:28
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N66a44d1b3eba423a97801fcedb948b28
39 schema:url https://link.springer.com/10.1007%2Fs12076-017-0196-8
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N4fd8f3c7ada94f0dacd8ea9606cd1d96 rdf:first sg:person.010575775341.50
44 rdf:rest rdf:nil
45 N5ae394c4f9de48d592db69a89b3d8224 schema:name readcube_id
46 schema:value 7b3eb0d44c549db39f2233ff68903d900ac58fe2bcb5965dc848c6005a0e4ddb
47 rdf:type schema:PropertyValue
48 N66a44d1b3eba423a97801fcedb948b28 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N8ec3fd584f6f468aada3d90fb988e485 schema:volumeNumber 11
51 rdf:type schema:PublicationVolume
52 Nce5d6290294644bcb6b250e5ee8699f6 schema:name doi
53 schema:value 10.1007/s12076-017-0196-8
54 rdf:type schema:PropertyValue
55 Nd18a1355461a4925ac214c25f236ad6b schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 Nf15102e7f9bd4b20bc927bf65d5a0231 schema:name dimensions_id
58 schema:value pub.1092815210
59 rdf:type schema:PropertyValue
60 Nfe8f0aee0416441f82794873e7aadfc4 rdf:first sg:person.013041442265.32
61 rdf:rest N4fd8f3c7ada94f0dacd8ea9606cd1d96
62 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
63 schema:name Economics
64 rdf:type schema:DefinedTerm
65 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
66 schema:name Applied Economics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136188 schema:issn 1864-4031
69 1864-404X
70 schema:name Letters in Spatial and Resource Sciences
71 rdf:type schema:Periodical
72 sg:person.010575775341.50 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
73 schema:familyName Vinci
74 schema:givenName Concetto Paolo
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575775341.50
76 rdf:type schema:Person
77 sg:person.013041442265.32 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
78 schema:familyName Aldieri
79 schema:givenName Luigi
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013041442265.32
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01434278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023997530
83 https://doi.org/10.1007/bf01434278
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s10961-007-9065-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050741620
86 https://doi.org/10.1007/s10961-007-9065-8
87 rdf:type schema:CreativeWork
88 sg:pub.10.1023/a:1007707430416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017892115
89 https://doi.org/10.1023/a:1007707430416
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/scientificamerican0491-168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527331
92 https://doi.org/10.1038/scientificamerican0491-168
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1006/jeem.2000.1166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038029218
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0095-0696(02)00053-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040872132
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/09654310902778045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026809429
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/10438599.2013.788838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036761499
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1093/reep/res016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046700239
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1111/1468-2354.00027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891589
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958961
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1177/1086026616680683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053764498
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1257/pol.4.4.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064532158
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2139/ssrn.2931340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090425566
113 rdf:type schema:CreativeWork
114 https://doi.org/10.2307/3003321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102602495
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2307/3440244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070325125
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
119 schema:name Department of Economic and Statistical Sciences, University of Salerno, Fisciano, Italy
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...