Spatio-Temporal Population Modelling for Enhanced Assessment of Urban Exposure to Flood Risk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06

AUTHORS

Alan Smith, David Martin, Samantha Cockings

ABSTRACT

There is a growing need for high resolution spatio-temporal population estimates which allow accurate assessment of population exposure to natural hazards. Current approaches to population estimation are usually limited either by the use of arbitrary administrative boundaries or insufficient resolution in the temporal dimension. The innovative approach proposed here combines the use of a spatio-temporal gridded population model with flood inundation data to estimate time-specific variations in population exposed to natural hazards. The approach is exemplified through an application centred on Southampton (UK) using Environment Agency flood map inundation data. Results demonstrate that large fluctuations occur over time in the population distribution within flood risk zones. Variations in the spatio-temporal distribution of population subgroups are explored. Analysis using GIS indicates a diurnal shift in exposure between fluvial and tidal flooding, particularly attributable to the movement of the working age population. This illustrates the improvements achievable to flood risk management as well as potential application to other natural hazard scenarios both within the UK and globally. More... »

PAGES

145-163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12061-014-9110-6

DOI

http://dx.doi.org/10.1007/s12061-014-9110-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030250773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Geography and Environment, University of Southampton, SO17 1BJ, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Alan", 
        "id": "sg:person.011534640745.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534640745.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Geography and Environment, University of Southampton, SO17 1BJ, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martin", 
        "givenName": "David", 
        "id": "sg:person.01326027200.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326027200.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Geography and Environment, University of Southampton, SO17 1BJ, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cockings", 
        "givenName": "Samantha", 
        "id": "sg:person.0661165522.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661165522.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11069-011-9868-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000828573", 
          "https://doi.org/10.1007/s11069-011-9868-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0198-9715(95)00028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2006.1803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005103986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/wea.133.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007065100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w4020430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01944365608979227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010913266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/wea.26.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014144370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1753-318x.2008.00010.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014588627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018582679", 
          "https://doi.org/10.1038/nclimate1979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2005.1569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022101774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12061-011-9062-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022309455", 
          "https://doi.org/10.1007/s12061-011-9062-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/004316502760195894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023843728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-004-4546-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027576359", 
          "https://doi.org/10.1007/s11069-004-4546-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-004-4546-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027576359", 
          "https://doi.org/10.1007/s11069-004-4546-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0710375105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wea.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035657119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-3236-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928918", 
          "https://doi.org/10.1007/978-90-481-3236-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-3236-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928918", 
          "https://doi.org/10.1007/978-90-481-3236-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/0033-0124.10042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038857336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9780203432877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039302194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijpg.280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044682616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0324-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047255493", 
          "https://doi.org/10.1007/s11069-012-0324-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/wea.212.03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052328391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0389-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052732908", 
          "https://doi.org/10.1007/s11069-012-0389-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0143-6228(93)90079-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053106358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10708-007-9105-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053330484", 
          "https://doi.org/10.1007/s10708-007-9105-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1959)087<0367:aooas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063451018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf-d-12-00033.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063456218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/wama.2008.161.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068242526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/622344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070662414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5153/sro.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072639638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5153/sro.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072639638"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "There is a growing need for high resolution spatio-temporal population estimates which allow accurate assessment of population exposure to natural hazards. Current approaches to population estimation are usually limited either by the use of arbitrary administrative boundaries or insufficient resolution in the temporal dimension. The innovative approach proposed here combines the use of a spatio-temporal gridded population model with flood inundation data to estimate time-specific variations in population exposed to natural hazards. The approach is exemplified through an application centred on Southampton (UK) using Environment Agency flood map inundation data. Results demonstrate that large fluctuations occur over time in the population distribution within flood risk zones. Variations in the spatio-temporal distribution of population subgroups are explored. Analysis using GIS indicates a diurnal shift in exposure between fluvial and tidal flooding, particularly attributable to the movement of the working age population. This illustrates the improvements achievable to flood risk management as well as potential application to other natural hazard scenarios both within the UK and globally.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12061-014-9110-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2784491", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050061", 
        "issn": [
          "1874-463X", 
          "1874-4621"
        ], 
        "name": "Applied Spatial Analysis and Policy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Spatio-Temporal Population Modelling for Enhanced Assessment of Urban Exposure to Flood Risk", 
    "pagination": "145-163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "901c34e2502da43eda477b4587c7a029dc272d8d2754c1bb9c036c200f160d80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12061-014-9110-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030250773"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12061-014-9110-6", 
      "https://app.dimensions.ai/details/publication/pub.1030250773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88218_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12061-014-9110-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12061-014-9110-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12061-014-9110-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12061-014-9110-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12061-014-9110-6'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12061-014-9110-6 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N1fc610097ea745f78975e74e27a973e9
4 schema:citation sg:pub.10.1007/978-90-481-3236-2_2
5 sg:pub.10.1007/s10708-007-9105-9
6 sg:pub.10.1007/s11069-004-4546-7
7 sg:pub.10.1007/s11069-011-9868-7
8 sg:pub.10.1007/s11069-012-0324-0
9 sg:pub.10.1007/s11069-012-0389-9
10 sg:pub.10.1007/s12061-011-9062-z
11 sg:pub.10.1038/nclimate1979
12 https://doi.org/10.1002/ijpg.280
13 https://doi.org/10.1002/wea.305
14 https://doi.org/10.1016/0143-6228(93)90079-g
15 https://doi.org/10.1016/0198-9715(95)00028-3
16 https://doi.org/10.1073/pnas.0710375105
17 https://doi.org/10.1080/01944365608979227
18 https://doi.org/10.1098/rsta.2005.1569
19 https://doi.org/10.1098/rsta.2006.1803
20 https://doi.org/10.1111/0033-0124.10042
21 https://doi.org/10.1111/j.1753-318x.2008.00010.x
22 https://doi.org/10.1175/1520-0493(1959)087<0367:aooas>2.0.co;2
23 https://doi.org/10.1175/waf-d-12-00033.1
24 https://doi.org/10.1256/004316502760195894
25 https://doi.org/10.1256/wea.133.05
26 https://doi.org/10.1256/wea.212.03
27 https://doi.org/10.1256/wea.26.05
28 https://doi.org/10.1680/wama.2008.161.1.13
29 https://doi.org/10.2307/622344
30 https://doi.org/10.3390/w4020430
31 https://doi.org/10.4324/9780203432877
32 https://doi.org/10.5153/sro.1570
33 schema:datePublished 2016-06
34 schema:datePublishedReg 2016-06-01
35 schema:description There is a growing need for high resolution spatio-temporal population estimates which allow accurate assessment of population exposure to natural hazards. Current approaches to population estimation are usually limited either by the use of arbitrary administrative boundaries or insufficient resolution in the temporal dimension. The innovative approach proposed here combines the use of a spatio-temporal gridded population model with flood inundation data to estimate time-specific variations in population exposed to natural hazards. The approach is exemplified through an application centred on Southampton (UK) using Environment Agency flood map inundation data. Results demonstrate that large fluctuations occur over time in the population distribution within flood risk zones. Variations in the spatio-temporal distribution of population subgroups are explored. Analysis using GIS indicates a diurnal shift in exposure between fluvial and tidal flooding, particularly attributable to the movement of the working age population. This illustrates the improvements achievable to flood risk management as well as potential application to other natural hazard scenarios both within the UK and globally.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N5d7af948a9ae419eaa36a32382d9f084
40 Nb233c168e97f44ce8a7e7f159d246b28
41 sg:journal.1050061
42 schema:name Spatio-Temporal Population Modelling for Enhanced Assessment of Urban Exposure to Flood Risk
43 schema:pagination 145-163
44 schema:productId N258c4a2dce2d4f18a2af706776c0e60e
45 N300e4d5faf7c447d99ea7263eb056571
46 Nee311ce45baa40ab8a808d51737cfc95
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250773
48 https://doi.org/10.1007/s12061-014-9110-6
49 schema:sdDatePublished 2019-04-11T13:06
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N8489bdb16a184bd49c8aa14bb99ce90e
52 schema:url http://link.springer.com/10.1007%2Fs12061-014-9110-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1fc610097ea745f78975e74e27a973e9 rdf:first sg:person.011534640745.72
57 rdf:rest Nd00636a76f8b4d4fb417054da4d199d0
58 N258c4a2dce2d4f18a2af706776c0e60e schema:name dimensions_id
59 schema:value pub.1030250773
60 rdf:type schema:PropertyValue
61 N300e4d5faf7c447d99ea7263eb056571 schema:name doi
62 schema:value 10.1007/s12061-014-9110-6
63 rdf:type schema:PropertyValue
64 N53cf893c40fd43e188fa66449667e94a rdf:first sg:person.0661165522.02
65 rdf:rest rdf:nil
66 N5d7af948a9ae419eaa36a32382d9f084 schema:volumeNumber 9
67 rdf:type schema:PublicationVolume
68 N8489bdb16a184bd49c8aa14bb99ce90e schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb233c168e97f44ce8a7e7f159d246b28 schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 Nd00636a76f8b4d4fb417054da4d199d0 rdf:first sg:person.01326027200.21
73 rdf:rest N53cf893c40fd43e188fa66449667e94a
74 Nee311ce45baa40ab8a808d51737cfc95 schema:name readcube_id
75 schema:value 901c34e2502da43eda477b4587c7a029dc272d8d2754c1bb9c036c200f160d80
76 rdf:type schema:PropertyValue
77 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
78 schema:name Medical and Health Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
81 schema:name Public Health and Health Services
82 rdf:type schema:DefinedTerm
83 sg:grant.2784491 http://pending.schema.org/fundedItem sg:pub.10.1007/s12061-014-9110-6
84 rdf:type schema:MonetaryGrant
85 sg:journal.1050061 schema:issn 1874-4621
86 1874-463X
87 schema:name Applied Spatial Analysis and Policy
88 rdf:type schema:Periodical
89 sg:person.011534640745.72 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
90 schema:familyName Smith
91 schema:givenName Alan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534640745.72
93 rdf:type schema:Person
94 sg:person.01326027200.21 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
95 schema:familyName Martin
96 schema:givenName David
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326027200.21
98 rdf:type schema:Person
99 sg:person.0661165522.02 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
100 schema:familyName Cockings
101 schema:givenName Samantha
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661165522.02
103 rdf:type schema:Person
104 sg:pub.10.1007/978-90-481-3236-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928918
105 https://doi.org/10.1007/978-90-481-3236-2_2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10708-007-9105-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053330484
108 https://doi.org/10.1007/s10708-007-9105-9
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11069-004-4546-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027576359
111 https://doi.org/10.1007/s11069-004-4546-7
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11069-011-9868-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000828573
114 https://doi.org/10.1007/s11069-011-9868-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11069-012-0324-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047255493
117 https://doi.org/10.1007/s11069-012-0324-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11069-012-0389-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052732908
120 https://doi.org/10.1007/s11069-012-0389-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s12061-011-9062-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022309455
123 https://doi.org/10.1007/s12061-011-9062-z
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nclimate1979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018582679
126 https://doi.org/10.1038/nclimate1979
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/ijpg.280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044682616
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/wea.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035657119
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0143-6228(93)90079-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1053106358
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0198-9715(95)00028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731818
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1073/pnas.0710375105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149404
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/01944365608979227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010913266
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1098/rsta.2005.1569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022101774
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1098/rsta.2006.1803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005103986
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/0033-0124.10042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038857336
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1753-318x.2008.00010.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014588627
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1175/1520-0493(1959)087<0367:aooas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451018
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1175/waf-d-12-00033.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063456218
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1256/004316502760195894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023843728
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1256/wea.133.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007065100
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1256/wea.212.03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052328391
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1256/wea.26.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014144370
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1680/wama.2008.161.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068242526
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2307/622344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070662414
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3390/w4020430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637448
165 rdf:type schema:CreativeWork
166 https://doi.org/10.4324/9780203432877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039302194
167 rdf:type schema:CreativeWork
168 https://doi.org/10.5153/sro.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072639638
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
171 schema:name Geography and Environment, University of Southampton, SO17 1BJ, Southampton, UK
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...