Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-10

AUTHORS

Ercument Karakas, Soner Vardarbasi

ABSTRACT

In this work, the dynamic model, flux-current-rotor position and torque-current-rotor position values of the switched reluctance motor (SRM) are obtained in MATLAB/Simulink. Motor control speed is achieved by self-tuning fuzzy PI (Proportional Integral) controller with artificial neural network tuning (NSTFPI). Performance of NSTFPI controller is compared with performance of fuzzy logic (FL) and fuzzy logic PI (FLPI) controllers in respect of rise time, settling time, overshoot and steady state error. More... »

PAGES

587-596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12046-007-0044-4

DOI

http://dx.doi.org/10.1007/s12046-007-0044-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016162773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical Education Faculty, Electrical Education Department, Kocaeli University, Kocaeli, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.411105.0", 
          "name": [
            "Technical Education Faculty, Electrical Education Department, Kocaeli University, Kocaeli, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karakas", 
        "givenName": "Ercument", 
        "id": "sg:person.015066434161.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015066434161.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Department, Koprubasi Vocational School, Trabzon, Turkey", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Electrical Department, Koprubasi Vocational School, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vardarbasi", 
        "givenName": "Soner", 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "In this work, the dynamic model, flux-current-rotor position and torque-current-rotor position values of the switched reluctance motor (SRM) are obtained in MATLAB/Simulink. Motor control speed is achieved by self-tuning fuzzy PI (Proportional Integral) controller with artificial neural network tuning (NSTFPI). Performance of NSTFPI controller is compared with performance of fuzzy logic (FL) and fuzzy logic PI (FLPI) controllers in respect of rise time, settling time, overshoot and steady state error.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12046-007-0044-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136089", 
        "issn": [
          "0256-2499", 
          "0973-7677"
        ], 
        "name": "S\u0101dhan\u0101", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "fuzzy logic", 
      "self-tuning fuzzy PI controller", 
      "fuzzy PI controller", 
      "artificial neural network", 
      "fuzzy logic PI controller", 
      "neural network", 
      "network tuning", 
      "switched reluctance motor", 
      "steady state error", 
      "PI controller", 
      "position values", 
      "motor control speed", 
      "MATLAB/Simulink", 
      "state error", 
      "controller", 
      "speed control", 
      "rotor position", 
      "control speed", 
      "SR motor", 
      "performance", 
      "network", 
      "dynamic model", 
      "logic", 
      "reluctance motor", 
      "Simulink", 
      "error", 
      "tuning", 
      "speed", 
      "motor", 
      "time", 
      "work", 
      "model", 
      "overshoot", 
      "position", 
      "control", 
      "respect", 
      "rise time", 
      "values", 
      "rotor position values", 
      "artificial neural network tuning", 
      "neural network tuning", 
      "NSTFPI controller", 
      "logic PI (FLPI) controllers"
    ], 
    "name": "Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network", 
    "pagination": "587-596", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016162773"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12046-007-0044-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12046-007-0044-4", 
      "https://app.dimensions.ai/details/publication/pub.1016162773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_449.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12046-007-0044-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12046-007-0044-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12046-007-0044-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12046-007-0044-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12046-007-0044-4'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      68 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12046-007-0044-4 schema:about anzsrc-for:09
2 schema:author Nc35b8e64fa68455f903d5a7b04f0f723
3 schema:datePublished 2007-10
4 schema:datePublishedReg 2007-10-01
5 schema:description In this work, the dynamic model, flux-current-rotor position and torque-current-rotor position values of the switched reluctance motor (SRM) are obtained in MATLAB/Simulink. Motor control speed is achieved by self-tuning fuzzy PI (Proportional Integral) controller with artificial neural network tuning (NSTFPI). Performance of NSTFPI controller is compared with performance of fuzzy logic (FL) and fuzzy logic PI (FLPI) controllers in respect of rise time, settling time, overshoot and steady state error.
6 schema:genre article
7 schema:inLanguage en
8 schema:isAccessibleForFree true
9 schema:isPartOf N0a80f126677f409f883954a6809e793d
10 Nbaa5a710246144a5bc9fcdda537f47e2
11 sg:journal.1136089
12 schema:keywords MATLAB/Simulink
13 NSTFPI controller
14 PI controller
15 SR motor
16 Simulink
17 artificial neural network
18 artificial neural network tuning
19 control
20 control speed
21 controller
22 dynamic model
23 error
24 fuzzy PI controller
25 fuzzy logic
26 fuzzy logic PI controller
27 logic
28 logic PI (FLPI) controllers
29 model
30 motor
31 motor control speed
32 network
33 network tuning
34 neural network
35 neural network tuning
36 overshoot
37 performance
38 position
39 position values
40 reluctance motor
41 respect
42 rise time
43 rotor position
44 rotor position values
45 self-tuning fuzzy PI controller
46 speed
47 speed control
48 state error
49 steady state error
50 switched reluctance motor
51 time
52 tuning
53 values
54 work
55 schema:name Speed control of SR motor by self-tuning fuzzy PI controller with artificial neural network
56 schema:pagination 587-596
57 schema:productId Nce4d7df01720460a886310bee03cb630
58 Nd9b1139ed14a42c9b840404a665efa88
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016162773
60 https://doi.org/10.1007/s12046-007-0044-4
61 schema:sdDatePublished 2021-12-01T19:19
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N148a0e2689ac421c8cfd33b0a5a10f41
64 schema:url https://doi.org/10.1007/s12046-007-0044-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0a80f126677f409f883954a6809e793d schema:volumeNumber 32
69 rdf:type schema:PublicationVolume
70 N148a0e2689ac421c8cfd33b0a5a10f41 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N7f4ba9ac655e4ed9bcf918324078a636 rdf:first Nc32c7baffa2447c6875ded4a758d2b02
73 rdf:rest rdf:nil
74 Nbaa5a710246144a5bc9fcdda537f47e2 schema:issueNumber 5
75 rdf:type schema:PublicationIssue
76 Nc32c7baffa2447c6875ded4a758d2b02 schema:affiliation grid-institutes:None
77 schema:familyName Vardarbasi
78 schema:givenName Soner
79 rdf:type schema:Person
80 Nc35b8e64fa68455f903d5a7b04f0f723 rdf:first sg:person.015066434161.04
81 rdf:rest N7f4ba9ac655e4ed9bcf918324078a636
82 Nce4d7df01720460a886310bee03cb630 schema:name dimensions_id
83 schema:value pub.1016162773
84 rdf:type schema:PropertyValue
85 Nd9b1139ed14a42c9b840404a665efa88 schema:name doi
86 schema:value 10.1007/s12046-007-0044-4
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1136089 schema:issn 0256-2499
92 0973-7677
93 schema:name Sādhanā
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.015066434161.04 schema:affiliation grid-institutes:grid.411105.0
97 schema:familyName Karakas
98 schema:givenName Ercument
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015066434161.04
100 rdf:type schema:Person
101 grid-institutes:None schema:alternateName Electrical Department, Koprubasi Vocational School, Trabzon, Turkey
102 schema:name Electrical Department, Koprubasi Vocational School, Trabzon, Turkey
103 rdf:type schema:Organization
104 grid-institutes:grid.411105.0 schema:alternateName Technical Education Faculty, Electrical Education Department, Kocaeli University, Kocaeli, Turkey
105 schema:name Technical Education Faculty, Electrical Education Department, Kocaeli University, Kocaeli, Turkey
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...