Why some pool shots are more difficult than others View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Justin Jankunas, Richard N. Zare

ABSTRACT

The physics behind the game of billiards is rather well understood as is our grasp of classical mechanics. We present here a mathematical explanation of why slice shots are more difficult than direct shots. Despite a large number of treatises dedicated to the study of physics of billiards, it appears that the simple explanation has escaped our attention until now. We show that high impact-parameter shots impart a larger angular spread to the object ball, compared to head-on shots. The effect can be understood in terms of a non-linear relationship between the impact parameter and the scattering angle, and the fact that a real-world pool player does not have a perfect cue ball control; in other words, the impact parameter distribution is not a delta function, but has a finite spread. To keep the mathematics simple and not to obscure the underlying physical principles our treatment ignores the ball’s spin, friction, and other well-known effects in the game of pool. More... »

PAGES

116-122

Journal

TITLE

Resonance

ISSUE

2

VOLUME

19

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12045-014-0015-0

DOI

http://dx.doi.org/10.1007/s12045-014-0015-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039098719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jankunas", 
        "givenName": "Justin", 
        "id": "sg:person.0713433727.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713433727.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zare", 
        "givenName": "Richard N.", 
        "id": "sg:person.010075246350.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199203864.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098756863"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "The physics behind the game of billiards is rather well understood as is our grasp of classical mechanics. We present here a mathematical explanation of why slice shots are more difficult than direct shots. Despite a large number of treatises dedicated to the study of physics of billiards, it appears that the simple explanation has escaped our attention until now. We show that high impact-parameter shots impart a larger angular spread to the object ball, compared to head-on shots. The effect can be understood in terms of a non-linear relationship between the impact parameter and the scattering angle, and the fact that a real-world pool player does not have a perfect cue ball control; in other words, the impact parameter distribution is not a delta function, but has a finite spread. To keep the mathematics simple and not to obscure the underlying physical principles our treatment ignores the ball\u2019s spin, friction, and other well-known effects in the game of pool.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12045-014-0015-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136490", 
        "issn": [
          "0971-8044", 
          "0973-712X"
        ], 
        "name": "Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Why some pool shots are more difficult than others", 
    "pagination": "116-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba3f259d5470df3928bbe18d6dfee8410cec80c136c26d9ae273bcd350a7b709"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12045-014-0015-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039098719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12045-014-0015-0", 
      "https://app.dimensions.ai/details/publication/pub.1039098719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12045-014-0015-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12045-014-0015-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12045-014-0015-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12045-014-0015-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12045-014-0015-0'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12045-014-0015-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbce77912f5ad47518f241979afd17196
4 schema:citation https://doi.org/10.1093/acprof:oso/9780199203864.001.0001
5 schema:datePublished 2014-02
6 schema:datePublishedReg 2014-02-01
7 schema:description The physics behind the game of billiards is rather well understood as is our grasp of classical mechanics. We present here a mathematical explanation of why slice shots are more difficult than direct shots. Despite a large number of treatises dedicated to the study of physics of billiards, it appears that the simple explanation has escaped our attention until now. We show that high impact-parameter shots impart a larger angular spread to the object ball, compared to head-on shots. The effect can be understood in terms of a non-linear relationship between the impact parameter and the scattering angle, and the fact that a real-world pool player does not have a perfect cue ball control; in other words, the impact parameter distribution is not a delta function, but has a finite spread. To keep the mathematics simple and not to obscure the underlying physical principles our treatment ignores the ball’s spin, friction, and other well-known effects in the game of pool.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndde1244a8442474499549022d7fe3278
12 Ne6bd00ead2c84666bb562632cd7782b2
13 sg:journal.1136490
14 schema:name Why some pool shots are more difficult than others
15 schema:pagination 116-122
16 schema:productId N36b4873715694dbdb880861be156ea97
17 N95bcd83381434916976be17fe8298ebe
18 Nf7c53e1b82494089b854fc0b4b67568d
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098719
20 https://doi.org/10.1007/s12045-014-0015-0
21 schema:sdDatePublished 2019-04-11T01:10
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N316f3ff532a34222a118feb8347d9437
24 schema:url http://link.springer.com/10.1007%2Fs12045-014-0015-0
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N316f3ff532a34222a118feb8347d9437 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N36b4873715694dbdb880861be156ea97 schema:name dimensions_id
31 schema:value pub.1039098719
32 rdf:type schema:PropertyValue
33 N95bcd83381434916976be17fe8298ebe schema:name readcube_id
34 schema:value ba3f259d5470df3928bbe18d6dfee8410cec80c136c26d9ae273bcd350a7b709
35 rdf:type schema:PropertyValue
36 Nbce77912f5ad47518f241979afd17196 rdf:first sg:person.0713433727.78
37 rdf:rest Nfa7efed6b31940108b73068c0442dd6a
38 Ndde1244a8442474499549022d7fe3278 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 Ne6bd00ead2c84666bb562632cd7782b2 schema:volumeNumber 19
41 rdf:type schema:PublicationVolume
42 Nf7c53e1b82494089b854fc0b4b67568d schema:name doi
43 schema:value 10.1007/s12045-014-0015-0
44 rdf:type schema:PropertyValue
45 Nfa7efed6b31940108b73068c0442dd6a rdf:first sg:person.010075246350.09
46 rdf:rest rdf:nil
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136490 schema:issn 0971-8044
54 0973-712X
55 schema:name Resonance
56 rdf:type schema:Periodical
57 sg:person.010075246350.09 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
58 schema:familyName Zare
59 schema:givenName Richard N.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09
61 rdf:type schema:Person
62 sg:person.0713433727.78 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
63 schema:familyName Jankunas
64 schema:givenName Justin
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713433727.78
66 rdf:type schema:Person
67 https://doi.org/10.1093/acprof:oso/9780199203864.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098756863
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
70 schema:name Department of Chemistry, Stanford University, 94305, Stanford, CA, USA
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...