GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

S S Kannan, J F Thomsen

ABSTRACT

Let G be an almost simple, simply connected algebraic group over the field C of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G, and let W be the Weyl group defined by T. The Borel group B determines a subset of simple reflections in W. For w in W, we let Z(w,i̲) be the Bott–Samelson–Demazure–Hansen variety corresponding to a reduced expression i̲ of w as a product of these simple reflections. In this article, we study the geometric invariant theoretic quotient of Z(w,i̲) for the T-linearized ample line bundles. More... »

PAGES

25

References to SciGraph publications

  • 1994. Geometric Invariant Theory in NONE
  • 2015-09. AUTOMORPHISM GROUP OF A BOTT–SAMELSON–DEMAZURE–HANSEN VARIETY in TRANSFORMATION GROUPS
  • 2009-09. Torus quotients of homogeneous spaces — minimal dimensional Schubert varieties admitting semi-stable points in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 2014. GIT Related Problems of the Flag Variety for the Action of a Maximal Torus in GROUPS OF EXCEPTIONAL TYPE, COXETER GROUPS AND RELATED GEOMETRIES
  • 1972. Introduction to Lie Algebras and Representation Theory in NONE
  • 1967-02. Representability of group functors, and automorphisms of algebraic schemes in INVENTIONES MATHEMATICAE
  • 1998-02. Torus quotients of homogeneous spaces in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1999-02. Torus quotients of homogeneous spaces — II in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1975. Linear Algebraic Groups in NONE
  • 1977. Algebraic Geometry in NONE
  • 1989. The Picard Group of a G-Variety in ALGEBRAISCHE TRANSFORMATIONSGRUPPEN UND INVARIANTENTHEORIE ALGEBRAIC TRANSFORMATION GROUPS AND INVARIANT THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12044-019-0470-3

    DOI

    http://dx.doi.org/10.1007/s12044-019-0470-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112685373


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chennai Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.444722.3", 
              "name": [
                "Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Siruseri, 603 103, Kelambakkam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kannan", 
            "givenName": "S S", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aarhus University", 
              "id": "https://www.grid.ac/institutes/grid.7048.b", 
              "name": [
                "Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000, Aarhus C, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomsen", 
            "givenName": "J F", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-3849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001329144", 
              "https://doi.org/10.1007/978-1-4757-3849-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3849-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001329144", 
              "https://doi.org/10.1007/978-1-4757-3849-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01404578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730026", 
              "https://doi.org/10.1007/bf01404578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01404578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004730026", 
              "https://doi.org/10.1007/bf01404578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-81-322-1814-2_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006615534", 
              "https://doi.org/10.1007/978-81-322-1814-2_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00031-015-9327-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014447710", 
              "https://doi.org/10.1007/s00031-015-9327-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9443-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022334100", 
              "https://doi.org/10.1007/978-1-4684-9443-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9443-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022334100", 
              "https://doi.org/10.1007/978-1-4684-9443-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7662-9_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025228626", 
              "https://doi.org/10.1007/978-3-0348-7662-9_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12044-009-0045-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026739612", 
              "https://doi.org/10.1007/s12044-009-0045-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12044-009-0045-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026739612", 
              "https://doi.org/10.1007/s12044-009-0045-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(82)90040-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036404606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02837764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039048476", 
              "https://doi.org/10.1007/bf02837764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02837764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039048476", 
              "https://doi.org/10.1007/bf02837764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6398-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041581647", 
              "https://doi.org/10.1007/978-1-4612-6398-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6398-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041581647", 
              "https://doi.org/10.1007/978-1-4612-6398-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03161306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043224178", 
              "https://doi.org/10.1007/bf03161306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03161306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043224178", 
              "https://doi.org/10.1007/bf03161306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03161306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043224178", 
              "https://doi.org/10.1007/bf03161306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1056-3911-03-00358-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059339535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2372843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-11489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073613299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/asens.1261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084407818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/advsov/016.2/02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101567766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109710132", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57916-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710132", 
              "https://doi.org/10.1007/978-3-642-57916-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57916-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710132", 
              "https://doi.org/10.1007/978-3-642-57916-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Let G be an almost simple, simply connected algebraic group over the field C of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G, and let W be the Weyl group defined by T. The Borel group B determines a subset of simple reflections in W. For w in W, we let Z(w,i\u0332) be the Bott\u2013Samelson\u2013Demazure\u2013Hansen variety corresponding to a reduced expression i\u0332 of w as a product of these simple reflections. In this article, we study the geometric invariant theoretic quotient of Z(w,i\u0332) for the T-linearized ample line bundles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12044-019-0470-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "2008-1359", 
              "2251-7456"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "name": "GIT quotient of a Bott\u2013Samelson\u2013Demazure\u2013Hansen variety by a maximal torus", 
        "pagination": "25", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4a371afe5c2bf886667e7048bd1ec6b0e516260b6cf83c20b87a3497a86095c2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12044-019-0470-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112685373"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12044-019-0470-3", 
          "https://app.dimensions.ai/details/publication/pub.1112685373"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88242_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12044-019-0470-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0470-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0470-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0470-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0470-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12044-019-0470-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf49865b6025a4784a47998df2e6bf1df
    4 schema:citation sg:pub.10.1007/978-1-4612-6398-2
    5 sg:pub.10.1007/978-1-4684-9443-3
    6 sg:pub.10.1007/978-1-4757-3849-0
    7 sg:pub.10.1007/978-3-0348-7662-9_5
    8 sg:pub.10.1007/978-3-642-57916-5
    9 sg:pub.10.1007/978-81-322-1814-2_10
    10 sg:pub.10.1007/bf01404578
    11 sg:pub.10.1007/bf02837764
    12 sg:pub.10.1007/bf03161306
    13 sg:pub.10.1007/s00031-015-9327-8
    14 sg:pub.10.1007/s12044-009-0045-9
    15 https://app.dimensions.ai/details/publication/pub.1109710132
    16 https://doi.org/10.1016/0001-8708(82)90040-8
    17 https://doi.org/10.1090/advsov/016.2/02
    18 https://doi.org/10.1090/s1056-3911-03-00358-8
    19 https://doi.org/10.2307/1970870
    20 https://doi.org/10.2307/2372843
    21 https://doi.org/10.24033/asens.1261
    22 https://doi.org/10.7146/math.scand.a-11489
    23 schema:datePublished 2019-04
    24 schema:datePublishedReg 2019-04-01
    25 schema:description Let G be an almost simple, simply connected algebraic group over the field C of complex numbers. Let B be a Borel subgroup of G containing a maximal torus T of G, and let W be the Weyl group defined by T. The Borel group B determines a subset of simple reflections in W. For w in W, we let Z(w,i̲) be the Bott–Samelson–Demazure–Hansen variety corresponding to a reduced expression i̲ of w as a product of these simple reflections. In this article, we study the geometric invariant theoretic quotient of Z(w,i̲) for the T-linearized ample line bundles.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N4b580962b90742e9ac5728fa5b08bdb8
    30 Ne020750695794d7ba28008dbedc2a87e
    31 sg:journal.1320093
    32 schema:name GIT quotient of a Bott–Samelson–Demazure–Hansen variety by a maximal torus
    33 schema:pagination 25
    34 schema:productId N4f28216d8cef452bbf5a296a7651b1a8
    35 N6a88aca7bba94d4fa02ab9ffabde3d75
    36 Nc60fc4b866374b619249fb143a6ee319
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112685373
    38 https://doi.org/10.1007/s12044-019-0470-3
    39 schema:sdDatePublished 2019-04-11T13:10
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Neefd6c4726da472db2982e2d16a3502c
    42 schema:url https://link.springer.com/10.1007%2Fs12044-019-0470-3
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N4b580962b90742e9ac5728fa5b08bdb8 schema:volumeNumber 129
    47 rdf:type schema:PublicationVolume
    48 N4f28216d8cef452bbf5a296a7651b1a8 schema:name dimensions_id
    49 schema:value pub.1112685373
    50 rdf:type schema:PropertyValue
    51 N54cba452ecad4348a15b243c08fe31e9 schema:affiliation https://www.grid.ac/institutes/grid.444722.3
    52 schema:familyName Kannan
    53 schema:givenName S S
    54 rdf:type schema:Person
    55 N5934612a3a0c4104a246d1d55f654ca3 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
    56 schema:familyName Thomsen
    57 schema:givenName J F
    58 rdf:type schema:Person
    59 N6a88aca7bba94d4fa02ab9ffabde3d75 schema:name doi
    60 schema:value 10.1007/s12044-019-0470-3
    61 rdf:type schema:PropertyValue
    62 Nbc24f088cfba4e6daf97611d0df5099f rdf:first N5934612a3a0c4104a246d1d55f654ca3
    63 rdf:rest rdf:nil
    64 Nc60fc4b866374b619249fb143a6ee319 schema:name readcube_id
    65 schema:value 4a371afe5c2bf886667e7048bd1ec6b0e516260b6cf83c20b87a3497a86095c2
    66 rdf:type schema:PropertyValue
    67 Ne020750695794d7ba28008dbedc2a87e schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 Neefd6c4726da472db2982e2d16a3502c schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nf49865b6025a4784a47998df2e6bf1df rdf:first N54cba452ecad4348a15b243c08fe31e9
    72 rdf:rest Nbc24f088cfba4e6daf97611d0df5099f
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1320093 schema:issn 2008-1359
    80 2251-7456
    81 schema:name Proceedings - Mathematical Sciences
    82 rdf:type schema:Periodical
    83 sg:pub.10.1007/978-1-4612-6398-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041581647
    84 https://doi.org/10.1007/978-1-4612-6398-2
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-1-4684-9443-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022334100
    87 https://doi.org/10.1007/978-1-4684-9443-3
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
    90 https://doi.org/10.1007/978-1-4757-3849-0
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-3-0348-7662-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025228626
    93 https://doi.org/10.1007/978-3-0348-7662-9_5
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-3-642-57916-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710132
    96 https://doi.org/10.1007/978-3-642-57916-5
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-81-322-1814-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006615534
    99 https://doi.org/10.1007/978-81-322-1814-2_10
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01404578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730026
    102 https://doi.org/10.1007/bf01404578
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02837764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039048476
    105 https://doi.org/10.1007/bf02837764
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf03161306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043224178
    108 https://doi.org/10.1007/bf03161306
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00031-015-9327-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014447710
    111 https://doi.org/10.1007/s00031-015-9327-8
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s12044-009-0045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026739612
    114 https://doi.org/10.1007/s12044-009-0045-9
    115 rdf:type schema:CreativeWork
    116 https://app.dimensions.ai/details/publication/pub.1109710132 schema:CreativeWork
    117 https://doi.org/10.1016/0001-8708(82)90040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036404606
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1090/advsov/016.2/02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567766
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1090/s1056-3911-03-00358-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339535
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.2307/1970870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676179
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.2307/2372843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899454
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.24033/asens.1261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407818
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.7146/math.scand.a-11489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613299
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.444722.3 schema:alternateName Chennai Mathematical Institute
    132 schema:name Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Siruseri, 603 103, Kelambakkam, India
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
    135 schema:name Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000, Aarhus C, Denmark
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...