Comparison between two differential graded algebras in noncommutative geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Partha Sarathi Chakraborty, Satyajit Guin

ABSTRACT

Starting with a spectral triple, one can associate two canonical differential graded algebras (DGA) defined by Connes (Noncommutative geometry (1994) Academic Press Inc., San Diego) and Fröhlich et al. (Comm. Math. Phys.203(1) (1999) 119–184). For the classical spectral triples associated with compact Riemannian spin manifolds, both these DGAs coincide with the de-Rham DGA. Therefore, both are candidates for the noncommutative space of differential forms. Here we compare these two DGAs in a very precise sense. More... »

PAGES

29

References to SciGraph publications

  • 1995-03. The local index formula in noncommutative geometry in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2002-12. Quantum Spheres and Projective Spaces as Graph Algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-09. Spectral Triples and Associated Connes-de Rham Complex for the Quantum SU(2) and the Quantum Sphere in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999-05. Supersymmetric Quantum Theory and Non-Commutative Geometry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12044-019-0467-y

    DOI

    http://dx.doi.org/10.1007/s12044-019-0467-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112685370


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indian Statistical Institute", 
              "id": "https://www.grid.ac/institutes/grid.39953.35", 
              "name": [
                "Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, 700 108, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborty", 
            "givenName": "Partha Sarathi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Kanpur", 
              "id": "https://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Mathematics and Statistics, Indian Institute of Technology, 208 016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guin", 
            "givenName": "Satyajit", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00220-003-0921-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003395629", 
              "https://doi.org/10.1007/s00220-003-0921-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2010.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007254401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2011.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007589973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/jdn003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008067667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomphys.2014.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008195137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-002-0732-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019279881", 
              "https://doi.org/10.1007/s00220-002-0732-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01895667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020430055", 
              "https://doi.org/10.1007/bf01895667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01895667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020430055", 
              "https://doi.org/10.1007/bf01895667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033553591", 
              "https://doi.org/10.1007/s002200050608"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Starting with a spectral triple, one can associate two canonical differential graded algebras (DGA) defined by Connes (Noncommutative geometry (1994) Academic Press Inc., San Diego) and Fr\u00f6hlich et al. (Comm. Math. Phys.203(1) (1999) 119\u2013184). For the classical spectral triples associated with compact Riemannian spin manifolds, both these DGAs coincide with the de-Rham DGA. Therefore, both are candidates for the noncommutative space of differential forms. Here we compare these two DGAs in a very precise sense.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s12044-019-0467-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "2008-1359", 
              "2251-7456"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "name": "Comparison between two differential graded algebras in noncommutative geometry", 
        "pagination": "29", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c3ac6b13ac5c599054a0a4cd31aa5ece25648c7609caf0e4cf3699209007d3a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12044-019-0467-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112685370"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12044-019-0467-y", 
          "https://app.dimensions.ai/details/publication/pub.1112685370"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88233_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12044-019-0467-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0467-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0467-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0467-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0467-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12044-019-0467-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9d4c249f0de7491facf7bd1d32ff21b5
    4 schema:citation sg:pub.10.1007/bf01895667
    5 sg:pub.10.1007/s00220-002-0732-1
    6 sg:pub.10.1007/s00220-003-0921-6
    7 sg:pub.10.1007/s002200050608
    8 https://doi.org/10.1016/j.geomphys.2014.10.011
    9 https://doi.org/10.1016/j.jfa.2010.10.007
    10 https://doi.org/10.1016/j.jfa.2011.01.009
    11 https://doi.org/10.1112/jlms/jdn003
    12 schema:datePublished 2019-04
    13 schema:datePublishedReg 2019-04-01
    14 schema:description Starting with a spectral triple, one can associate two canonical differential graded algebras (DGA) defined by Connes (Noncommutative geometry (1994) Academic Press Inc., San Diego) and Fröhlich et al. (Comm. Math. Phys.203(1) (1999) 119–184). For the classical spectral triples associated with compact Riemannian spin manifolds, both these DGAs coincide with the de-Rham DGA. Therefore, both are candidates for the noncommutative space of differential forms. Here we compare these two DGAs in a very precise sense.
    15 schema:genre non_research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N1e9bacbfb6d7446f94d5e5118bd18a16
    19 N4e4eecef87c64762acbdce86f84960b7
    20 sg:journal.1320093
    21 schema:name Comparison between two differential graded algebras in noncommutative geometry
    22 schema:pagination 29
    23 schema:productId N49b079b6a8144d88979472ce24b215a8
    24 Nb7131bbfe4454014836af4985246abee
    25 Nd5d9581db79640739079c17fb8ea3b3c
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112685370
    27 https://doi.org/10.1007/s12044-019-0467-y
    28 schema:sdDatePublished 2019-04-11T13:09
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nef2f2bb36f7f4464a6ad8a297c2beb24
    31 schema:url https://link.springer.com/10.1007%2Fs12044-019-0467-y
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1e9bacbfb6d7446f94d5e5118bd18a16 schema:volumeNumber 129
    36 rdf:type schema:PublicationVolume
    37 N49b079b6a8144d88979472ce24b215a8 schema:name doi
    38 schema:value 10.1007/s12044-019-0467-y
    39 rdf:type schema:PropertyValue
    40 N4e4eecef87c64762acbdce86f84960b7 schema:issueNumber 2
    41 rdf:type schema:PublicationIssue
    42 N7849b9edf90843008aae499dcebd714e schema:affiliation https://www.grid.ac/institutes/grid.39953.35
    43 schema:familyName Chakraborty
    44 schema:givenName Partha Sarathi
    45 rdf:type schema:Person
    46 N9d4c249f0de7491facf7bd1d32ff21b5 rdf:first N7849b9edf90843008aae499dcebd714e
    47 rdf:rest Ne72231733ec5491fbfa9cdf9c854a864
    48 Nb7131bbfe4454014836af4985246abee schema:name readcube_id
    49 schema:value 8c3ac6b13ac5c599054a0a4cd31aa5ece25648c7609caf0e4cf3699209007d3a
    50 rdf:type schema:PropertyValue
    51 Nd5d9581db79640739079c17fb8ea3b3c schema:name dimensions_id
    52 schema:value pub.1112685370
    53 rdf:type schema:PropertyValue
    54 Ne72231733ec5491fbfa9cdf9c854a864 rdf:first Nf91c0d0dae04458d89f4dc7912556b7a
    55 rdf:rest rdf:nil
    56 Nef2f2bb36f7f4464a6ad8a297c2beb24 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nf91c0d0dae04458d89f4dc7912556b7a schema:affiliation https://www.grid.ac/institutes/grid.417965.8
    59 schema:familyName Guin
    60 schema:givenName Satyajit
    61 rdf:type schema:Person
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1320093 schema:issn 2008-1359
    69 2251-7456
    70 schema:name Proceedings - Mathematical Sciences
    71 rdf:type schema:Periodical
    72 sg:pub.10.1007/bf01895667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020430055
    73 https://doi.org/10.1007/bf01895667
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/s00220-002-0732-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019279881
    76 https://doi.org/10.1007/s00220-002-0732-1
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s00220-003-0921-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003395629
    79 https://doi.org/10.1007/s00220-003-0921-6
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s002200050608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033553591
    82 https://doi.org/10.1007/s002200050608
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/j.geomphys.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008195137
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.jfa.2010.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007254401
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/j.jfa.2011.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007589973
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1112/jlms/jdn003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008067667
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
    93 schema:name Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, 700 108, Kolkata, India
    94 rdf:type schema:Organization
    95 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
    96 schema:name Department of Mathematics and Statistics, Indian Institute of Technology, 208 016, Kanpur, India
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...