Some notes on tetrahedrally closed spherical sets in Euclidean spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Bart De Bruyn

ABSTRACT

We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.

PAGES

15

Journal

TITLE

Proceedings - Mathematical Sciences

ISSUE

2

VOLUME

129

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z

DOI

http://dx.doi.org/10.1007/s12044-019-0466-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141887


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Department of Mathematics, Ghent University, Krijgslaan 281 (S25), 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Bruyn", 
        "givenName": "Bart", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00156473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001782996", 
          "https://doi.org/10.1007/bf00156473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00156473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001782996", 
          "https://doi.org/10.1007/bf00156473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013855957", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74341-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013855957", 
          "https://doi.org/10.1007/978-3-642-74341-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74341-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013855957", 
          "https://doi.org/10.1007/978-3-642-74341-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(90)90030-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(76)90162-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031009198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00181622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049161780", 
          "https://doi.org/10.1007/bf00181622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1967-017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264865"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s12044-019-0466-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Some notes on tetrahedrally closed spherical sets in Euclidean spaces", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84eaef89a6b041855c022dc52f92788c1eaf88ef2fb8d515eb32c84bcc125f69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-019-0466-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141887"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-019-0466-z", 
      "https://app.dimensions.ai/details/publication/pub.1112141887"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12044-019-0466-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-019-0466-z schema:author N0555f1503d4a41cea58951aa411fc294
2 schema:citation sg:pub.10.1007/978-3-642-74341-2
3 sg:pub.10.1007/bf00156473
4 sg:pub.10.1007/bf00181622
5 https://app.dimensions.ai/details/publication/pub.1013855957
6 https://app.dimensions.ai/details/publication/pub.1039164941
7 https://doi.org/10.1016/0021-8693(76)90162-9
8 https://doi.org/10.1016/0097-3165(90)90030-z
9 https://doi.org/10.4153/cjm-1967-017-0
10 schema:datePublished 2019-04
11 schema:datePublishedReg 2019-04-01
12 schema:description We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nab24848abd80461cabad9224bc908ce4
17 Nd0c50ef3c6ed48479ec0cf2d99bef2ee
18 sg:journal.1320093
19 schema:name Some notes on tetrahedrally closed spherical sets in Euclidean spaces
20 schema:pagination 15
21 schema:productId N4a325068667c4bb3932e22eeec7ddde4
22 N78dd75a25ff048deb8fd4fbb34098f44
23 Nb1655af4b53f43fdbca5380984899f2f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141887
25 https://doi.org/10.1007/s12044-019-0466-z
26 schema:sdDatePublished 2019-04-11T13:09
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1dd9a97f3c4a4cbf9240833ad0b2a29f
29 schema:url https://link.springer.com/10.1007%2Fs12044-019-0466-z
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0555f1503d4a41cea58951aa411fc294 rdf:first N7a8292ceb94f438d8cd41a1fd72caf33
34 rdf:rest rdf:nil
35 N1dd9a97f3c4a4cbf9240833ad0b2a29f schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4a325068667c4bb3932e22eeec7ddde4 schema:name readcube_id
38 schema:value 84eaef89a6b041855c022dc52f92788c1eaf88ef2fb8d515eb32c84bcc125f69
39 rdf:type schema:PropertyValue
40 N78dd75a25ff048deb8fd4fbb34098f44 schema:name dimensions_id
41 schema:value pub.1112141887
42 rdf:type schema:PropertyValue
43 N7a8292ceb94f438d8cd41a1fd72caf33 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
44 schema:familyName De Bruyn
45 schema:givenName Bart
46 rdf:type schema:Person
47 Nab24848abd80461cabad9224bc908ce4 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Nb1655af4b53f43fdbca5380984899f2f schema:name doi
50 schema:value 10.1007/s12044-019-0466-z
51 rdf:type schema:PropertyValue
52 Nd0c50ef3c6ed48479ec0cf2d99bef2ee schema:volumeNumber 129
53 rdf:type schema:PublicationVolume
54 sg:journal.1320093 schema:issn 2008-1359
55 2251-7456
56 schema:name Proceedings - Mathematical Sciences
57 rdf:type schema:Periodical
58 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
59 https://doi.org/10.1007/978-3-642-74341-2
60 rdf:type schema:CreativeWork
61 sg:pub.10.1007/bf00156473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001782996
62 https://doi.org/10.1007/bf00156473
63 rdf:type schema:CreativeWork
64 sg:pub.10.1007/bf00181622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049161780
65 https://doi.org/10.1007/bf00181622
66 rdf:type schema:CreativeWork
67 https://app.dimensions.ai/details/publication/pub.1013855957 schema:CreativeWork
68 https://app.dimensions.ai/details/publication/pub.1039164941 schema:CreativeWork
69 https://doi.org/10.1016/0021-8693(76)90162-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031009198
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/0097-3165(90)90030-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048355
72 rdf:type schema:CreativeWork
73 https://doi.org/10.4153/cjm-1967-017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264865
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
76 schema:name Department of Mathematics, Ghent University, Krijgslaan 281 (S25), 9000, Ghent, Belgium
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...