Some notes on tetrahedrally closed spherical sets in Euclidean spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Bart De Bruyn

ABSTRACT

We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.

PAGES

15

References to SciGraph publications

  • 1983-06. The structure of near polygons with quads in GEOMETRIAE DEDICATA
  • 1980-03. Near n-gons and line systems in GEOMETRIAE DEDICATA
  • 1989. Distance-Regular Graphs in NONE
  • Journal

    TITLE

    Proceedings - Mathematical Sciences

    ISSUE

    2

    VOLUME

    129

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z

    DOI

    http://dx.doi.org/10.1007/s12044-019-0466-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112141887


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ghent University", 
              "id": "https://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Department of Mathematics, Ghent University, Krijgslaan 281 (S25), 9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Bruyn", 
            "givenName": "Bart", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00156473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001782996", 
              "https://doi.org/10.1007/bf00156473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00156473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001782996", 
              "https://doi.org/10.1007/bf00156473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1013855957", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-74341-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855957", 
              "https://doi.org/10.1007/978-3-642-74341-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(90)90030-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028048355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(76)90162-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031009198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00181622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049161780", 
              "https://doi.org/10.1007/bf00181622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1967-017-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072264865"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s12044-019-0466-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "2008-1359", 
              "2251-7456"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "name": "Some notes on tetrahedrally closed spherical sets in Euclidean spaces", 
        "pagination": "15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "84eaef89a6b041855c022dc52f92788c1eaf88ef2fb8d515eb32c84bcc125f69"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12044-019-0466-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112141887"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12044-019-0466-z", 
          "https://app.dimensions.ai/details/publication/pub.1112141887"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12044-019-0466-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0466-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12044-019-0466-z schema:author N6fcad75f32864f6592f24cd0c3e56f9c
    2 schema:citation sg:pub.10.1007/978-3-642-74341-2
    3 sg:pub.10.1007/bf00156473
    4 sg:pub.10.1007/bf00181622
    5 https://app.dimensions.ai/details/publication/pub.1013855957
    6 https://app.dimensions.ai/details/publication/pub.1039164941
    7 https://doi.org/10.1016/0021-8693(76)90162-9
    8 https://doi.org/10.1016/0097-3165(90)90030-z
    9 https://doi.org/10.4153/cjm-1967-017-0
    10 schema:datePublished 2019-04
    11 schema:datePublishedReg 2019-04-01
    12 schema:description We describe a connection between a family of tetrahedrally closed spherical sets in Euclidean spaces and a family of point-line geometries called near polygons.
    13 schema:genre non_research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N0fd60f8da8664197b3b15ad895b88fa9
    17 N1ca2895833564c88b55531318551a01f
    18 sg:journal.1320093
    19 schema:name Some notes on tetrahedrally closed spherical sets in Euclidean spaces
    20 schema:pagination 15
    21 schema:productId N7a86d75032604c3db341ea6f257df1f0
    22 Na2c3ff3200e849fd891cdb7b28830792
    23 Ncba1b691852a4923a8b48dc4749cfd93
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141887
    25 https://doi.org/10.1007/s12044-019-0466-z
    26 schema:sdDatePublished 2019-04-11T13:09
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N74a9b7089d384e1a973e897238907513
    29 schema:url https://link.springer.com/10.1007%2Fs12044-019-0466-z
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N0fd60f8da8664197b3b15ad895b88fa9 schema:volumeNumber 129
    34 rdf:type schema:PublicationVolume
    35 N1ca2895833564c88b55531318551a01f schema:issueNumber 2
    36 rdf:type schema:PublicationIssue
    37 N6fcad75f32864f6592f24cd0c3e56f9c rdf:first Nef405be3d23943d0b1946cd4f1960fe6
    38 rdf:rest rdf:nil
    39 N74a9b7089d384e1a973e897238907513 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N7a86d75032604c3db341ea6f257df1f0 schema:name doi
    42 schema:value 10.1007/s12044-019-0466-z
    43 rdf:type schema:PropertyValue
    44 Na2c3ff3200e849fd891cdb7b28830792 schema:name dimensions_id
    45 schema:value pub.1112141887
    46 rdf:type schema:PropertyValue
    47 Ncba1b691852a4923a8b48dc4749cfd93 schema:name readcube_id
    48 schema:value 84eaef89a6b041855c022dc52f92788c1eaf88ef2fb8d515eb32c84bcc125f69
    49 rdf:type schema:PropertyValue
    50 Nef405be3d23943d0b1946cd4f1960fe6 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
    51 schema:familyName De Bruyn
    52 schema:givenName Bart
    53 rdf:type schema:Person
    54 sg:journal.1320093 schema:issn 2008-1359
    55 2251-7456
    56 schema:name Proceedings - Mathematical Sciences
    57 rdf:type schema:Periodical
    58 sg:pub.10.1007/978-3-642-74341-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855957
    59 https://doi.org/10.1007/978-3-642-74341-2
    60 rdf:type schema:CreativeWork
    61 sg:pub.10.1007/bf00156473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001782996
    62 https://doi.org/10.1007/bf00156473
    63 rdf:type schema:CreativeWork
    64 sg:pub.10.1007/bf00181622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049161780
    65 https://doi.org/10.1007/bf00181622
    66 rdf:type schema:CreativeWork
    67 https://app.dimensions.ai/details/publication/pub.1013855957 schema:CreativeWork
    68 https://app.dimensions.ai/details/publication/pub.1039164941 schema:CreativeWork
    69 https://doi.org/10.1016/0021-8693(76)90162-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031009198
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/0097-3165(90)90030-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048355
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.4153/cjm-1967-017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264865
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
    76 schema:name Department of Mathematics, Ghent University, Krijgslaan 281 (S25), 9000, Ghent, Belgium
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...