Generalized skew-derivations annihilating and centralizing on multilinear polynomials in prime rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Priyadwip Das, Basudeb Dhara, Sukhendu Kar

ABSTRACT

Let R be a prime ring of characteristic ≠2, Qr its right Martindale quotient ring, C its extended centroid, F≠0 a generalized skew derivation of R, f(x1,…,xn) a multilinear polynomial over C not central-valued on R and S the set of all evaluations of f(x1,…,xn) in R. If a[F(x),x]∈C for all x∈S, then there exist λ∈C and b∈Qr such that F(x)=bx+xb+λx, for all x∈R and one of the following holds:b∈C;f(x1,…,xn)2 is central-valued on R;R satisfies s4, the standered identity of degree 4. b∈C; f(x1,…,xn)2 is central-valued on R; R satisfies s4, the standered identity of degree 4. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-019-0462-3

DOI

http://dx.doi.org/10.1007/s12044-019-0462-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141884


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Mathematics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Priyadwip", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Belda College, 721 424, Belda, Paschim Medinipur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhara", 
        "givenName": "Basudeb", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Mathematics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kar", 
        "givenName": "Sukhendu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1957-0095863-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001968457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jabr.1993.1181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007230182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-96-03351-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015694545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1988-0947646-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018522797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879808826263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027008869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1975-0354764-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038687140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0037446611050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041106063", 
          "https://doi.org/10.1134/s0037446611050065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-007-0090-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041255948", 
          "https://doi.org/10.1007/s11856-007-0090-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-009-0052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048288118", 
          "https://doi.org/10.1007/s11856-009-0052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-009-0052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048288118", 
          "https://doi.org/10.1007/s11856-009-0052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927872.2011.553859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052722750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2003.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053094315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219498812501113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062996072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1005386711000836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063013070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm129-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072182313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5486/pmd.2014.5958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072917612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11650/twjm/1500404923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090784774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11650/twjm/1500407520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090785625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Let R be a prime ring of characteristic \u22602, Qr its right Martindale quotient ring, C its extended centroid, F\u22600 a generalized skew derivation of R, f(x1,\u2026,xn) a multilinear polynomial over C not central-valued on R and S the set of all evaluations of f(x1,\u2026,xn) in R. If a[F(x),x]\u2208C for all x\u2208S, then there exist \u03bb\u2208C and b\u2208Qr such that F(x)=bx+xb+\u03bbx, for all x\u2208R and one of the following holds:b\u2208C;f(x1,\u2026,xn)2 is central-valued on R;R satisfies s4, the standered identity of degree 4. b\u2208C; f(x1,\u2026,xn)2 is central-valued on R; R satisfies s4, the standered identity of degree 4.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12044-019-0462-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Generalized skew-derivations annihilating and centralizing on multilinear polynomials in prime rings", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be34a8f791df601cec3b5fb04e68a1d61ce8910bd99f8bc673267103dff187aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-019-0462-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141884"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-019-0462-3", 
      "https://app.dimensions.ai/details/publication/pub.1112141884"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12044-019-0462-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0462-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0462-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0462-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-019-0462-3'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-019-0462-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N81b50806c242481b9ac3b26456dc67a7
4 schema:citation sg:pub.10.1007/s11856-007-0090-y
5 sg:pub.10.1007/s11856-009-0052-7
6 sg:pub.10.1134/s0037446611050065
7 https://doi.org/10.1006/jabr.1993.1181
8 https://doi.org/10.1016/j.jalgebra.2003.12.032
9 https://doi.org/10.1080/00927872.2011.553859
10 https://doi.org/10.1080/00927879808826263
11 https://doi.org/10.1090/s0002-9939-1957-0095863-0
12 https://doi.org/10.1090/s0002-9939-1988-0947646-4
13 https://doi.org/10.1090/s0002-9939-96-03351-5
14 https://doi.org/10.1090/s0002-9947-1975-0354764-6
15 https://doi.org/10.1142/s0219498812501113
16 https://doi.org/10.1142/s1005386711000836
17 https://doi.org/10.11650/twjm/1500404923
18 https://doi.org/10.11650/twjm/1500407520
19 https://doi.org/10.4064/cm129-1-4
20 https://doi.org/10.5486/pmd.2014.5958
21 schema:datePublished 2019-04
22 schema:datePublishedReg 2019-04-01
23 schema:description Let R be a prime ring of characteristic ≠2, Qr its right Martindale quotient ring, C its extended centroid, F≠0 a generalized skew derivation of R, f(x1,…,xn) a multilinear polynomial over C not central-valued on R and S the set of all evaluations of f(x1,…,xn) in R. If a[F(x),x]∈C for all x∈S, then there exist λ∈C and b∈Qr such that F(x)=bx+xb+λx, for all x∈R and one of the following holds:b∈C;f(x1,…,xn)2 is central-valued on R;R satisfies s4, the standered identity of degree 4. b∈C; f(x1,…,xn)2 is central-valued on R; R satisfies s4, the standered identity of degree 4.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N4c93764034554fd2963c52e7c4ed1173
28 N63ccf272045348ed98f49d2e3e2f7b76
29 sg:journal.1320093
30 schema:name Generalized skew-derivations annihilating and centralizing on multilinear polynomials in prime rings
31 schema:pagination 18
32 schema:productId N12aebcd64e224db9ad8d231690389042
33 N29ba17afb1754f3a85ec8c3017292c62
34 N9d91276411664ba083d755efadf0dd46
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141884
36 https://doi.org/10.1007/s12044-019-0462-3
37 schema:sdDatePublished 2019-04-11T13:08
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N16f313ea8e274b579b94d323879eb5b3
40 schema:url https://link.springer.com/10.1007%2Fs12044-019-0462-3
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N06ef84d7b32f46b79df8f1a8458bb1ea rdf:first Nadb0e37c556847029cb043e1302e357e
45 rdf:rest rdf:nil
46 N08461db2cf8d47d3aa9d72187823bd48 schema:name Department of Mathematics, Belda College, 721 424, Belda, Paschim Medinipur, India
47 rdf:type schema:Organization
48 N12aebcd64e224db9ad8d231690389042 schema:name readcube_id
49 schema:value be34a8f791df601cec3b5fb04e68a1d61ce8910bd99f8bc673267103dff187aa
50 rdf:type schema:PropertyValue
51 N15407106a321467e8917d2f25e02ec1f schema:affiliation https://www.grid.ac/institutes/grid.216499.1
52 schema:familyName Das
53 schema:givenName Priyadwip
54 rdf:type schema:Person
55 N16f313ea8e274b579b94d323879eb5b3 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N29ba17afb1754f3a85ec8c3017292c62 schema:name dimensions_id
58 schema:value pub.1112141884
59 rdf:type schema:PropertyValue
60 N4c93764034554fd2963c52e7c4ed1173 schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 N4d3552b2806c4ef58f746932491b9954 rdf:first N9c908a111ed84e4981e23aa07adf0297
63 rdf:rest N06ef84d7b32f46b79df8f1a8458bb1ea
64 N63ccf272045348ed98f49d2e3e2f7b76 schema:volumeNumber 129
65 rdf:type schema:PublicationVolume
66 N81b50806c242481b9ac3b26456dc67a7 rdf:first N15407106a321467e8917d2f25e02ec1f
67 rdf:rest N4d3552b2806c4ef58f746932491b9954
68 N9c908a111ed84e4981e23aa07adf0297 schema:affiliation N08461db2cf8d47d3aa9d72187823bd48
69 schema:familyName Dhara
70 schema:givenName Basudeb
71 rdf:type schema:Person
72 N9d91276411664ba083d755efadf0dd46 schema:name doi
73 schema:value 10.1007/s12044-019-0462-3
74 rdf:type schema:PropertyValue
75 Nadb0e37c556847029cb043e1302e357e schema:affiliation https://www.grid.ac/institutes/grid.216499.1
76 schema:familyName Kar
77 schema:givenName Sukhendu
78 rdf:type schema:Person
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1320093 schema:issn 2008-1359
86 2251-7456
87 schema:name Proceedings - Mathematical Sciences
88 rdf:type schema:Periodical
89 sg:pub.10.1007/s11856-007-0090-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041255948
90 https://doi.org/10.1007/s11856-007-0090-y
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11856-009-0052-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048288118
93 https://doi.org/10.1007/s11856-009-0052-7
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s0037446611050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041106063
96 https://doi.org/10.1134/s0037446611050065
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1006/jabr.1993.1181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007230182
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jalgebra.2003.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053094315
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/00927872.2011.553859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052722750
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/00927879808826263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008869
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1090/s0002-9939-1957-0095863-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001968457
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1090/s0002-9939-1988-0947646-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018522797
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/s0002-9939-96-03351-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015694545
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1090/s0002-9947-1975-0354764-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038687140
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1142/s0219498812501113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996072
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1142/s1005386711000836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063013070
117 rdf:type schema:CreativeWork
118 https://doi.org/10.11650/twjm/1500404923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090784774
119 rdf:type schema:CreativeWork
120 https://doi.org/10.11650/twjm/1500407520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090785625
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4064/cm129-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072182313
123 rdf:type schema:CreativeWork
124 https://doi.org/10.5486/pmd.2014.5958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072917612
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
127 schema:name Department of Mathematics, Jadavpur University, 700 032, Kolkata, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...