McKay correspondence in quasi-SL quasitoric orbifolds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Saibal Ganguli

ABSTRACT

We show McKay correspondence for Betti numbers of Chen–Ruan cohomology of omnioriented quasi-SL quasitoric orbifolds. This generalizes a correspondence for SL projective toric orbifolds due to Batyrev and Dias (Topology35(4) (1996) 901–929) to a setting that does not require a complex or even an almost complex structure. In previous works with Ganguli and Poddar (Osaka J. Math.50(2) (2013) 397–415; 50(4) (2013) 977–1005), we have proved the correspondence in dimensions four and six. Here we deal with the general case. More... »

PAGES

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-018-0461-9

DOI

http://dx.doi.org/10.1007/s12044-018-0461-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112685369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ICTS-TIFR, Survey No. 151, Shivakote, Hesaraghatta Hobli, 560 089, Bengaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganguli", 
        "givenName": "Saibal", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00011158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004372992", 
          "https://doi.org/10.1007/pl00011158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s002460930300290x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008603876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015565912485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010026536", 
          "https://doi.org/10.1023/a:1015565912485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(95)00051-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011051421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-004-1089-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020684863", 
          "https://doi.org/10.1007/s00220-004-1089-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x03000368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025996796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-97-01821-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-91-06217-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1406137695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084460549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/312/05384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ulect/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098715962"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We show McKay correspondence for Betti numbers of Chen\u2013Ruan cohomology of omnioriented quasi-SL quasitoric orbifolds. This generalizes a correspondence for SL projective toric orbifolds due to Batyrev and Dias (Topology35(4) (1996) 901\u2013929) to a setting that does not require a complex or even an almost complex structure. In previous works with Ganguli and Poddar (Osaka J. Math.50(2) (2013) 397\u2013415; 50(4) (2013) 977\u20131005), we have proved the correspondence in dimensions four and six. Here we deal with the general case.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12044-018-0461-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "McKay correspondence in quasi-SL quasitoric orbifolds", 
    "pagination": "24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b75df5755129efeacec7744d5be237b7cc5a8965df68d5a0ccb5387d42dc6e5d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-018-0461-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112685369"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-018-0461-9", 
      "https://app.dimensions.ai/details/publication/pub.1112685369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88230_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12044-018-0461-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0461-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0461-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0461-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0461-9'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-018-0461-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na6fb6089fa3a45708b5ae02c5e62ed48
4 schema:citation sg:pub.10.1007/pl00011158
5 sg:pub.10.1007/s00220-004-1089-4
6 sg:pub.10.1023/a:1015565912485
7 https://doi.org/10.1016/0040-9383(95)00051-8
8 https://doi.org/10.1090/conm/312/05384
9 https://doi.org/10.1090/s0002-9947-97-01821-7
10 https://doi.org/10.1090/ulect/024
11 https://doi.org/10.1112/s0010437x03000368
12 https://doi.org/10.1112/s002460930300290x
13 https://doi.org/10.1215/s0012-7094-91-06217-4
14 https://doi.org/10.2307/2372472
15 https://doi.org/10.4310/jdg/1406137695
16 schema:datePublished 2019-04
17 schema:datePublishedReg 2019-04-01
18 schema:description We show McKay correspondence for Betti numbers of Chen–Ruan cohomology of omnioriented quasi-SL quasitoric orbifolds. This generalizes a correspondence for SL projective toric orbifolds due to Batyrev and Dias (Topology35(4) (1996) 901–929) to a setting that does not require a complex or even an almost complex structure. In previous works with Ganguli and Poddar (Osaka J. Math.50(2) (2013) 397–415; 50(4) (2013) 977–1005), we have proved the correspondence in dimensions four and six. Here we deal with the general case.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N2b68702a2b0243d699125a07a5722f1a
23 Ncaa117c850534c959ebd55e18c79682d
24 sg:journal.1320093
25 schema:name McKay correspondence in quasi-SL quasitoric orbifolds
26 schema:pagination 24
27 schema:productId N5851af7503f944cfbd44266664027067
28 N6f4f006e656c42c48152b5d844fb46fd
29 Naf3661d21e0c457695adcb8142419ba4
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112685369
31 https://doi.org/10.1007/s12044-018-0461-9
32 schema:sdDatePublished 2019-04-11T13:08
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N2cd369f89be2488c8bed2570e26004d1
35 schema:url https://link.springer.com/10.1007%2Fs12044-018-0461-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N27e1810c2b2b4b3aad1e7ce485e1b5ff schema:affiliation N3b433ee97f094b85adb26ea778d34042
40 schema:familyName Ganguli
41 schema:givenName Saibal
42 rdf:type schema:Person
43 N2b68702a2b0243d699125a07a5722f1a schema:volumeNumber 129
44 rdf:type schema:PublicationVolume
45 N2cd369f89be2488c8bed2570e26004d1 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N3b433ee97f094b85adb26ea778d34042 schema:name ICTS-TIFR, Survey No. 151, Shivakote, Hesaraghatta Hobli, 560 089, Bengaluru, India
48 rdf:type schema:Organization
49 N5851af7503f944cfbd44266664027067 schema:name doi
50 schema:value 10.1007/s12044-018-0461-9
51 rdf:type schema:PropertyValue
52 N6f4f006e656c42c48152b5d844fb46fd schema:name readcube_id
53 schema:value b75df5755129efeacec7744d5be237b7cc5a8965df68d5a0ccb5387d42dc6e5d
54 rdf:type schema:PropertyValue
55 Na6fb6089fa3a45708b5ae02c5e62ed48 rdf:first N27e1810c2b2b4b3aad1e7ce485e1b5ff
56 rdf:rest rdf:nil
57 Naf3661d21e0c457695adcb8142419ba4 schema:name dimensions_id
58 schema:value pub.1112685369
59 rdf:type schema:PropertyValue
60 Ncaa117c850534c959ebd55e18c79682d schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1320093 schema:issn 2008-1359
69 2251-7456
70 schema:name Proceedings - Mathematical Sciences
71 rdf:type schema:Periodical
72 sg:pub.10.1007/pl00011158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004372992
73 https://doi.org/10.1007/pl00011158
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s00220-004-1089-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020684863
76 https://doi.org/10.1007/s00220-004-1089-4
77 rdf:type schema:CreativeWork
78 sg:pub.10.1023/a:1015565912485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010026536
79 https://doi.org/10.1023/a:1015565912485
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0040-9383(95)00051-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011051421
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1090/conm/312/05384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200406
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/s0002-9947-97-01821-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852524
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/ulect/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098715962
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1112/s0010437x03000368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025996796
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1112/s002460930300290x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008603876
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1215/s0012-7094-91-06217-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419656
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2307/2372472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899135
96 rdf:type schema:CreativeWork
97 https://doi.org/10.4310/jdg/1406137695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084460549
98 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...