Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shikha Singh, Jagmohan Tanti

ABSTRACT

In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.

PAGES

23

References to SciGraph publications

Journal

TITLE

Proceedings - Mathematical Sciences

ISSUE

2

VOLUME

129

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x

DOI

http://dx.doi.org/10.1007/s12044-018-0460-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112381333


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central University of Jharkhand", 
          "id": "https://www.grid.ac/institutes/grid.448765.c", 
          "name": [
            "Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Shikha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central University of Jharkhand", 
          "id": "https://www.grid.ac/institutes/grid.448765.c", 
          "name": [
            "Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanti", 
        "givenName": "Jagmohan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12044-009-0046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031722255", 
          "https://doi.org/10.1007/s12044-009-0046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12044-009-0046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031722255", 
          "https://doi.org/10.1007/s12044-009-0046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.2001.2715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033432491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002776300002540x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039604570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2017.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085382450"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s12044-018-0460-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51fa7a379ce7b154c171ff5def52215f1c740715135c8291d9efb717aa01cc4b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-018-0460-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112381333"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-018-0460-x", 
      "https://app.dimensions.ai/details/publication/pub.1112381333"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12044-018-0460-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-018-0460-x schema:author Ne4affafa58884a589258ae74fe5e322b
2 schema:citation sg:pub.10.1007/s12044-009-0046-8
3 https://doi.org/10.1006/jnth.2001.2715
4 https://doi.org/10.1016/j.jnt.2017.03.019
5 https://doi.org/10.1017/s002776300002540x
6 schema:datePublished 2019-04
7 schema:datePublishedReg 2019-04-01
8 schema:description In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.
9 schema:genre non_research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N05ea8919669c439da1f1125172974fff
13 N45245b19ff4d4cf3ba0232532e715650
14 sg:journal.1320093
15 schema:name Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums
16 schema:pagination 23
17 schema:productId N55a49ca84533476690009f69c554fb36
18 Nbcff8774e8334e1f8e68b72223169bff
19 Nc9b8d623002944fe83015e37dd25c667
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112381333
21 https://doi.org/10.1007/s12044-018-0460-x
22 schema:sdDatePublished 2019-04-11T13:09
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N8fa5e0d55cdc487895e6eeb9c55259cf
25 schema:url https://link.springer.com/10.1007%2Fs12044-018-0460-x
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0439a613dd4f4c3a8963809e1d23a8ed rdf:first Nea4958ffb27d440798807b3422262d26
30 rdf:rest rdf:nil
31 N05ea8919669c439da1f1125172974fff schema:issueNumber 2
32 rdf:type schema:PublicationIssue
33 N45245b19ff4d4cf3ba0232532e715650 schema:volumeNumber 129
34 rdf:type schema:PublicationVolume
35 N55a49ca84533476690009f69c554fb36 schema:name dimensions_id
36 schema:value pub.1112381333
37 rdf:type schema:PropertyValue
38 N8fa5e0d55cdc487895e6eeb9c55259cf schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Na4ca19602ed040f69994bd08a936ba2c schema:affiliation https://www.grid.ac/institutes/grid.448765.c
41 schema:familyName Singh
42 schema:givenName Shikha
43 rdf:type schema:Person
44 Nbcff8774e8334e1f8e68b72223169bff schema:name doi
45 schema:value 10.1007/s12044-018-0460-x
46 rdf:type schema:PropertyValue
47 Nc9b8d623002944fe83015e37dd25c667 schema:name readcube_id
48 schema:value 51fa7a379ce7b154c171ff5def52215f1c740715135c8291d9efb717aa01cc4b
49 rdf:type schema:PropertyValue
50 Ne4affafa58884a589258ae74fe5e322b rdf:first Na4ca19602ed040f69994bd08a936ba2c
51 rdf:rest N0439a613dd4f4c3a8963809e1d23a8ed
52 Nea4958ffb27d440798807b3422262d26 schema:affiliation https://www.grid.ac/institutes/grid.448765.c
53 schema:familyName Tanti
54 schema:givenName Jagmohan
55 rdf:type schema:Person
56 sg:journal.1320093 schema:issn 2008-1359
57 2251-7456
58 schema:name Proceedings - Mathematical Sciences
59 rdf:type schema:Periodical
60 sg:pub.10.1007/s12044-009-0046-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031722255
61 https://doi.org/10.1007/s12044-009-0046-8
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1006/jnth.2001.2715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033432491
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1016/j.jnt.2017.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085382450
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1017/s002776300002540x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039604570
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.448765.c schema:alternateName Central University of Jharkhand
70 schema:name Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...