Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shikha Singh, Jagmohan Tanti

ABSTRACT

In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.

PAGES

23

References to SciGraph publications

Journal

TITLE

Proceedings - Mathematical Sciences

ISSUE

2

VOLUME

129

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x

DOI

http://dx.doi.org/10.1007/s12044-018-0460-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112381333


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central University of Jharkhand", 
          "id": "https://www.grid.ac/institutes/grid.448765.c", 
          "name": [
            "Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Shikha", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central University of Jharkhand", 
          "id": "https://www.grid.ac/institutes/grid.448765.c", 
          "name": [
            "Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanti", 
        "givenName": "Jagmohan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12044-009-0046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031722255", 
          "https://doi.org/10.1007/s12044-009-0046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12044-009-0046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031722255", 
          "https://doi.org/10.1007/s12044-009-0046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.2001.2715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033432491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002776300002540x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039604570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2017.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085382450"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s12044-018-0460-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "2008-1359", 
          "2251-7456"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51fa7a379ce7b154c171ff5def52215f1c740715135c8291d9efb717aa01cc4b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-018-0460-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112381333"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-018-0460-x", 
      "https://app.dimensions.ai/details/publication/pub.1112381333"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12044-018-0460-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0460-x'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-018-0460-x schema:author N23ea2c377dd04c77b6753b051acede11
2 schema:citation sg:pub.10.1007/s12044-009-0046-8
3 https://doi.org/10.1006/jnth.2001.2715
4 https://doi.org/10.1016/j.jnt.2017.03.019
5 https://doi.org/10.1017/s002776300002540x
6 schema:datePublished 2019-04
7 schema:datePublishedReg 2019-04-01
8 schema:description In this paper, we find the 2k-th power mean of the inversion of L-functions with the weight of the general quartic Gauss sums. We establish the results with the help of Dirichlet characters and properties of classical Gauss sums. We also describe asymptotic behaviour for it.
9 schema:genre non_research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ndb16e5d5896d4b5a9986ab3008cfeddd
13 Nfadd3f42fd3a4677a84c5db110d69377
14 sg:journal.1320093
15 schema:name Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums
16 schema:pagination 23
17 schema:productId N1bf8832393ca4909bb03ca6f9657d4a4
18 N7e7f6d274a1e48618d0cb894a23762e0
19 Nb2d6ac8fe4c94c66af81ccf79105e8b9
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112381333
21 https://doi.org/10.1007/s12044-018-0460-x
22 schema:sdDatePublished 2019-04-11T13:09
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nf51cbdc62e434dccaa89b36be5d7280c
25 schema:url https://link.springer.com/10.1007%2Fs12044-018-0460-x
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1bf8832393ca4909bb03ca6f9657d4a4 schema:name dimensions_id
30 schema:value pub.1112381333
31 rdf:type schema:PropertyValue
32 N23ea2c377dd04c77b6753b051acede11 rdf:first Nc9737f4d9d4d4ee6b64f10f0c900949d
33 rdf:rest Ndc58b888d3db4908b2186e2de30ee961
34 N67f372f3ac514c9fba40757119603cb7 schema:affiliation https://www.grid.ac/institutes/grid.448765.c
35 schema:familyName Tanti
36 schema:givenName Jagmohan
37 rdf:type schema:Person
38 N7e7f6d274a1e48618d0cb894a23762e0 schema:name readcube_id
39 schema:value 51fa7a379ce7b154c171ff5def52215f1c740715135c8291d9efb717aa01cc4b
40 rdf:type schema:PropertyValue
41 Nb2d6ac8fe4c94c66af81ccf79105e8b9 schema:name doi
42 schema:value 10.1007/s12044-018-0460-x
43 rdf:type schema:PropertyValue
44 Nc9737f4d9d4d4ee6b64f10f0c900949d schema:affiliation https://www.grid.ac/institutes/grid.448765.c
45 schema:familyName Singh
46 schema:givenName Shikha
47 rdf:type schema:Person
48 Ndb16e5d5896d4b5a9986ab3008cfeddd schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 Ndc58b888d3db4908b2186e2de30ee961 rdf:first N67f372f3ac514c9fba40757119603cb7
51 rdf:rest rdf:nil
52 Nf51cbdc62e434dccaa89b36be5d7280c schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nfadd3f42fd3a4677a84c5db110d69377 schema:volumeNumber 129
55 rdf:type schema:PublicationVolume
56 sg:journal.1320093 schema:issn 2008-1359
57 2251-7456
58 schema:name Proceedings - Mathematical Sciences
59 rdf:type schema:Periodical
60 sg:pub.10.1007/s12044-009-0046-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031722255
61 https://doi.org/10.1007/s12044-009-0046-8
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1006/jnth.2001.2715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033432491
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1016/j.jnt.2017.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085382450
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1017/s002776300002540x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039604570
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.448765.c schema:alternateName Central University of Jharkhand
70 schema:name Centre for Applied Mathematics, Central University of Jharkhand, 835 205, Ranchi, India
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...