A generalization of sumset and its applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-25

AUTHORS

Raj Kumar Mistri, Ram Krishna Pandey, Om Prakash

ABSTRACT

Let A be a nonempty finite subset of an additive abelian group G and let r and h be positive integers. The generalized h-fold sumset of A, denoted by h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document}, is the set of all sums of h elements of A, where each element appears in a sum at most r times. The direct problem for h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} is to find a lower bound for |h(r)A|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|h^{(r)}A|$$\end{document} in terms of |A|. The inverse problem for h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} is to determine the structure of the finite set A for which |h(r)A|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|h^{(r)}A|$$\end{document} is minimal with respect to some fixed value of |A|. If G=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}$$\end{document}, the direct and inverse problems are well studied. In case of G=Z/pZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}/p\mathbb {Z}$$\end{document}, p a prime, the direct problem has been studied very recently by Monopoli (J. Number Theory, 157 (2015) 271–279). In this paper, we express the generalized sumset h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} in terms of the regular and restricted sumsets. As an application of this result, we give a new proof of the theorem of Monopoli and as the second application, we present new proofs of direct and inverse theorems for the case G=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}$$\end{document}. More... »

PAGES

55

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-018-0437-9

DOI

http://dx.doi.org/10.1007/s12044-018-0437-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849345


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Harish-Chandra Research Institute, 211 019, Allahabad, India", 
          "id": "http://www.grid.ac/institutes/grid.450311.2", 
          "name": [
            "Department of Mathematics, Harish-Chandra Research Institute, 211 019, Allahabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mistri", 
        "givenName": "Raj Kumar", 
        "id": "sg:person.011324111423.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324111423.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247 667, Roorkee, India", 
          "id": "http://www.grid.ac/institutes/grid.19003.3b", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology Roorkee, 247 667, Roorkee, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Ram Krishna", 
        "id": "sg:person.012717052423.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012717052423.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Indian Institute of Technology Patna, 800 013, Patna, India", 
          "id": "http://www.grid.ac/institutes/grid.459592.6", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology Patna, 800 013, Patna, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prakash", 
        "givenName": "Om", 
        "id": "sg:person.011617013145.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617013145.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-3845-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007841263", 
          "https://doi.org/10.1007/978-1-4757-3845-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-25", 
    "datePublishedReg": "2018-10-25", 
    "description": "Let A be a nonempty finite subset of an additive abelian group G and let r and h be positive integers. The generalized h-fold sumset of A, denoted by h(r)A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h^{(r)}A$$\\end{document}, is the set of all sums of h elements of A, where each element appears in a sum at most r times. The direct problem for h(r)A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h^{(r)}A$$\\end{document} is to find a lower bound for |h(r)A|\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|h^{(r)}A|$$\\end{document} in terms of |A|. The inverse problem for h(r)A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h^{(r)}A$$\\end{document} is to determine the structure of the finite set A for which |h(r)A|\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|h^{(r)}A|$$\\end{document} is minimal with respect to some fixed value of |A|. If G=Z\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G = \\mathbb {Z}$$\\end{document}, the direct and inverse problems are well studied. In case of G=Z/pZ\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G = \\mathbb {Z}/p\\mathbb {Z}$$\\end{document}, p a prime, the direct problem has been studied very recently by Monopoli (J. Number Theory, 157 \n(2015) 271\u2013279). In this paper, we express the generalized sumset h(r)A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h^{(r)}A$$\\end{document} in terms of the regular and restricted sumsets. As an application of this result, we give a new proof of the theorem of Monopoli and as the second application, we present new proofs of direct and inverse theorems for the case G=Z\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G = \\mathbb {Z}$$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12044-018-0437-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "0253-4142", 
          "0973-7685"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "keywords": [
      "subset", 
      "cases", 
      "time", 
      "additive abelian group G", 
      "values", 
      "results", 
      "problem", 
      "terms", 
      "respect", 
      "primes", 
      "second application", 
      "group G", 
      "sum", 
      "proof", 
      "elements", 
      "applications", 
      "case G", 
      "abelian group G", 
      "sumset", 
      "set", 
      "structure", 
      "nonempty finite subsets", 
      "direct problem", 
      "inverse problem", 
      "Monopoli", 
      "paper", 
      "new proof", 
      "generalization", 
      "finite subset", 
      "positive integer", 
      "fold sumset", 
      "finite", 
      "theorem", 
      "inverse theorem", 
      "integers", 
      "restricted sumsets", 
      "theorem of Monopoli", 
      "generalization of sumset"
    ], 
    "name": "A generalization of sumset and its applications", 
    "pagination": "55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849345"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-018-0437-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-018-0437-9", 
      "https://app.dimensions.ai/details/publication/pub.1107849345"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12044-018-0437-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0437-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0437-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0437-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-018-0437-9'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      64 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-018-0437-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbe15364861d94edbb4b272e3aa3ad211
4 schema:citation sg:pub.10.1007/978-1-4757-3845-2
5 schema:datePublished 2018-10-25
6 schema:datePublishedReg 2018-10-25
7 schema:description Let A be a nonempty finite subset of an additive abelian group G and let r and h be positive integers. The generalized h-fold sumset of A, denoted by h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document}, is the set of all sums of h elements of A, where each element appears in a sum at most r times. The direct problem for h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} is to find a lower bound for |h(r)A|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|h^{(r)}A|$$\end{document} in terms of |A|. The inverse problem for h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} is to determine the structure of the finite set A for which |h(r)A|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|h^{(r)}A|$$\end{document} is minimal with respect to some fixed value of |A|. If G=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}$$\end{document}, the direct and inverse problems are well studied. In case of G=Z/pZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}/p\mathbb {Z}$$\end{document}, p a prime, the direct problem has been studied very recently by Monopoli (J. Number Theory, 157 (2015) 271–279). In this paper, we express the generalized sumset h(r)A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{(r)}A$$\end{document} in terms of the regular and restricted sumsets. As an application of this result, we give a new proof of the theorem of Monopoli and as the second application, we present new proofs of direct and inverse theorems for the case G=Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \mathbb {Z}$$\end{document}.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb7e568aab8c44b548e7c074ee7afd8ab
12 Ne529ec9f496a48f58254e09ba7485903
13 sg:journal.1320093
14 schema:keywords Monopoli
15 abelian group G
16 additive abelian group G
17 applications
18 case G
19 cases
20 direct problem
21 elements
22 finite
23 finite subset
24 fold sumset
25 generalization
26 generalization of sumset
27 group G
28 integers
29 inverse problem
30 inverse theorem
31 new proof
32 nonempty finite subsets
33 paper
34 positive integer
35 primes
36 problem
37 proof
38 respect
39 restricted sumsets
40 results
41 second application
42 set
43 structure
44 subset
45 sum
46 sumset
47 terms
48 theorem
49 theorem of Monopoli
50 time
51 values
52 schema:name A generalization of sumset and its applications
53 schema:pagination 55
54 schema:productId N839dd7fffe0747a3a68728aa6a35572e
55 Nf758c1ff906a4956be55a86c9e7c868b
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849345
57 https://doi.org/10.1007/s12044-018-0437-9
58 schema:sdDatePublished 2021-11-01T18:34
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N02fd852726624713b437a8738a550928
61 schema:url https://doi.org/10.1007/s12044-018-0437-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N02fd852726624713b437a8738a550928 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N7f5c3e6a96144c78ab46c1be6fac2a22 rdf:first sg:person.012717052423.21
68 rdf:rest Nd7930cfecd264ce6a189e84ad25e0ee9
69 N839dd7fffe0747a3a68728aa6a35572e schema:name dimensions_id
70 schema:value pub.1107849345
71 rdf:type schema:PropertyValue
72 Nb7e568aab8c44b548e7c074ee7afd8ab schema:volumeNumber 128
73 rdf:type schema:PublicationVolume
74 Nbe15364861d94edbb4b272e3aa3ad211 rdf:first sg:person.011324111423.09
75 rdf:rest N7f5c3e6a96144c78ab46c1be6fac2a22
76 Nd7930cfecd264ce6a189e84ad25e0ee9 rdf:first sg:person.011617013145.41
77 rdf:rest rdf:nil
78 Ne529ec9f496a48f58254e09ba7485903 schema:issueNumber 5
79 rdf:type schema:PublicationIssue
80 Nf758c1ff906a4956be55a86c9e7c868b schema:name doi
81 schema:value 10.1007/s12044-018-0437-9
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1320093 schema:issn 0253-4142
90 0973-7685
91 schema:name Proceedings - Mathematical Sciences
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.011324111423.09 schema:affiliation grid-institutes:grid.450311.2
95 schema:familyName Mistri
96 schema:givenName Raj Kumar
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324111423.09
98 rdf:type schema:Person
99 sg:person.011617013145.41 schema:affiliation grid-institutes:grid.459592.6
100 schema:familyName Prakash
101 schema:givenName Om
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617013145.41
103 rdf:type schema:Person
104 sg:person.012717052423.21 schema:affiliation grid-institutes:grid.19003.3b
105 schema:familyName Pandey
106 schema:givenName Ram Krishna
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012717052423.21
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4757-3845-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007841263
110 https://doi.org/10.1007/978-1-4757-3845-2
111 rdf:type schema:CreativeWork
112 grid-institutes:grid.19003.3b schema:alternateName Department of Mathematics, Indian Institute of Technology Roorkee, 247 667, Roorkee, India
113 schema:name Department of Mathematics, Indian Institute of Technology Roorkee, 247 667, Roorkee, India
114 rdf:type schema:Organization
115 grid-institutes:grid.450311.2 schema:alternateName Department of Mathematics, Harish-Chandra Research Institute, 211 019, Allahabad, India
116 schema:name Department of Mathematics, Harish-Chandra Research Institute, 211 019, Allahabad, India
117 rdf:type schema:Organization
118 grid-institutes:grid.459592.6 schema:alternateName Department of Mathematics, Indian Institute of Technology Patna, 800 013, Patna, India
119 schema:name Department of Mathematics, Indian Institute of Technology Patna, 800 013, Patna, India
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...