An elementary approach to the meromorphic continuation of some classical Dirichlet series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-10

AUTHORS

BISWAJYOTI SAHA

ABSTRACT

Here we obtain the meromorphic continuation of some classical Dirichlet series by means of elementary and simple translation formulae for these series. We are also able to determine the poles and the residues by this method. The motivation to our work originates from an idea of Ramanujan which he used to derive the meromorphic continuation of the Riemann zeta function. More... »

PAGES

225-233

References to SciGraph publications

  • 1887-03. Note sur la fonction in ACTA MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12044-017-0327-6

    DOI

    http://dx.doi.org/10.1007/s12044-017-0327-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084033963


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, Navy Nagar, India", 
              "id": "http://www.grid.ac/institutes/grid.22401.35", 
              "name": [
                "School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, Navy Nagar, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "SAHA", 
            "givenName": "BISWAJYOTI", 
            "id": "sg:person.012361551625.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361551625.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02612318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002647870", 
              "https://doi.org/10.1007/bf02612318"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-10", 
        "datePublishedReg": "2017-03-10", 
        "description": "Here we obtain the meromorphic continuation of some classical Dirichlet series by means of elementary and simple translation formulae for these series. We are also able to determine the poles and the residues by this method. The motivation to our work originates from an idea of Ramanujan which he used to derive the meromorphic continuation of the Riemann zeta function.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12044-017-0327-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "0253-4142", 
              "0973-7685"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "127"
          }
        ], 
        "keywords": [
          "continuation", 
          "series", 
          "function", 
          "translation", 
          "means", 
          "method", 
          "approach", 
          "pole", 
          "residues", 
          "motivation", 
          "simple translation", 
          "work", 
          "Dirichlet series", 
          "idea", 
          "meromorphic continuation", 
          "elementary approach", 
          "Ramanujan", 
          "zeta function", 
          "Riemann zeta function", 
          "classical Dirichlet series", 
          "idea of Ramanujan"
        ], 
        "name": "An elementary approach to the meromorphic continuation of some classical Dirichlet series", 
        "pagination": "225-233", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084033963"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12044-017-0327-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12044-017-0327-6", 
          "https://app.dimensions.ai/details/publication/pub.1084033963"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_721.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12044-017-0327-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-017-0327-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-017-0327-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-017-0327-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-017-0327-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      22 PREDICATES      47 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12044-017-0327-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N922c197679584a10b2dd976496dc2633
    4 schema:citation sg:pub.10.1007/bf02612318
    5 schema:datePublished 2017-03-10
    6 schema:datePublishedReg 2017-03-10
    7 schema:description Here we obtain the meromorphic continuation of some classical Dirichlet series by means of elementary and simple translation formulae for these series. We are also able to determine the poles and the residues by this method. The motivation to our work originates from an idea of Ramanujan which he used to derive the meromorphic continuation of the Riemann zeta function.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N0ebb484c6ae84d4b9d48e068819f7356
    12 Nb4ed213a67274f5cae67e8172b6adcd6
    13 sg:journal.1320093
    14 schema:keywords Dirichlet series
    15 Ramanujan
    16 Riemann zeta function
    17 approach
    18 classical Dirichlet series
    19 continuation
    20 elementary approach
    21 function
    22 idea
    23 idea of Ramanujan
    24 means
    25 meromorphic continuation
    26 method
    27 motivation
    28 pole
    29 residues
    30 series
    31 simple translation
    32 translation
    33 work
    34 zeta function
    35 schema:name An elementary approach to the meromorphic continuation of some classical Dirichlet series
    36 schema:pagination 225-233
    37 schema:productId N3f732c4886b745e78fcff0085ef0f840
    38 Na58ce5bcecba4580bad543dabbcca2d2
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084033963
    40 https://doi.org/10.1007/s12044-017-0327-6
    41 schema:sdDatePublished 2021-12-01T19:38
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N7cbfb3383fba4ae4b3a05004fffd752b
    44 schema:url https://doi.org/10.1007/s12044-017-0327-6
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N0ebb484c6ae84d4b9d48e068819f7356 schema:volumeNumber 127
    49 rdf:type schema:PublicationVolume
    50 N3f732c4886b745e78fcff0085ef0f840 schema:name dimensions_id
    51 schema:value pub.1084033963
    52 rdf:type schema:PropertyValue
    53 N7cbfb3383fba4ae4b3a05004fffd752b schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N922c197679584a10b2dd976496dc2633 rdf:first sg:person.012361551625.79
    56 rdf:rest rdf:nil
    57 Na58ce5bcecba4580bad543dabbcca2d2 schema:name doi
    58 schema:value 10.1007/s12044-017-0327-6
    59 rdf:type schema:PropertyValue
    60 Nb4ed213a67274f5cae67e8172b6adcd6 schema:issueNumber 2
    61 rdf:type schema:PublicationIssue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1320093 schema:issn 0253-4142
    69 0973-7685
    70 schema:name Proceedings - Mathematical Sciences
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.012361551625.79 schema:affiliation grid-institutes:grid.22401.35
    74 schema:familyName SAHA
    75 schema:givenName BISWAJYOTI
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361551625.79
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf02612318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002647870
    79 https://doi.org/10.1007/bf02612318
    80 rdf:type schema:CreativeWork
    81 grid-institutes:grid.22401.35 schema:alternateName School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, Navy Nagar, India
    82 schema:name School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Mumbai, Navy Nagar, India
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...