A note on a kind of character sums over the short interval View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07-26

AUTHORS

RONG MA, YULONG ZHANG

ABSTRACT

Let p be a prime, χ denote the Dirichlet character modulo p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(p)=\{a\in {\mathbb{Z}}^{+}|(a,p)=1,a\bar{a}\equiv 1(\bmod\ p),|a-\bar{a}|\le H\}$\end{document}. We study the distribution of elements in the set L(p) in character over the short interval. In this paper, we use the analytic method and show the distribution property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{n\le N\atop n\in L(p)}\chi(n), $$\end{document}and give a non-trivial estimate. More... »

PAGES

321-329

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12044-013-0129-4

DOI

http://dx.doi.org/10.1007/s12044-013-0129-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032597527


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Science, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Science, Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MA", 
        "givenName": "RONG", 
        "id": "sg:person.014071323365.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ZHANG", 
        "givenName": "YULONG", 
        "id": "sg:person.011151534565.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-1705-1_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089736780", 
          "https://doi.org/10.1007/978-1-4757-1705-1_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-5579-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045686763", 
          "https://doi.org/10.1007/978-1-4757-5579-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-26", 
    "datePublishedReg": "2013-07-26", 
    "description": "Let p be a prime, \u03c7 denote the Dirichlet character modulo p and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$L(p)=\\{a\\in {\\mathbb{Z}}^{+}|(a,p)=1,a\\bar{a}\\equiv 1(\\bmod\\ p),|a-\\bar{a}|\\le H\\}$\\end{document}. We study the distribution of elements in the set L(p) in character over the short interval. In this paper, we use the analytic method and show the distribution property of\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\sum\\limits_{n\\le N\\atop n\\in L(p)}\\chi(n), $$\\end{document}and give a non-trivial estimate.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12044-013-0129-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320093", 
        "issn": [
          "0253-4142", 
          "0973-7685"
        ], 
        "name": "Proceedings - Mathematical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "keywords": [
      "distribution of elements", 
      "distribution properties", 
      "properties", 
      "distribution", 
      "elements", 
      "short intervals", 
      "analytic methods", 
      "method", 
      "kind", 
      "intervals", 
      "non-trivial estimates", 
      "estimates", 
      "character", 
      "sum", 
      "primes", 
      "note", 
      "paper", 
      "modulo p", 
      "character sums", 
      "Dirichlet character modulo p", 
      "character modulo p"
    ], 
    "name": "A note on a kind of character sums over the short interval", 
    "pagination": "321-329", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032597527"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12044-013-0129-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12044-013-0129-4", 
      "https://app.dimensions.ai/details/publication/pub.1032597527"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_599.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12044-013-0129-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-013-0129-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-013-0129-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-013-0129-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-013-0129-4'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      22 PREDICATES      48 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12044-013-0129-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na2b5efbe8bcc4afebdda6c24784e225a
4 schema:citation sg:pub.10.1007/978-1-4757-1705-1_46
5 sg:pub.10.1007/978-1-4757-5579-4
6 schema:datePublished 2013-07-26
7 schema:datePublishedReg 2013-07-26
8 schema:description Let p be a prime, χ denote the Dirichlet character modulo p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(p)=\{a\in {\mathbb{Z}}^{+}|(a,p)=1,a\bar{a}\equiv 1(\bmod\ p),|a-\bar{a}|\le H\}$\end{document}. We study the distribution of elements in the set L(p) in character over the short interval. In this paper, we use the analytic method and show the distribution property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{n\le N\atop n\in L(p)}\chi(n), $$\end{document}and give a non-trivial estimate.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N6459dc65573c4363a05967a5f5121d21
13 N64f7f2f29c644a7882c710e329c4cc00
14 sg:journal.1320093
15 schema:keywords Dirichlet character modulo p
16 analytic methods
17 character
18 character modulo p
19 character sums
20 distribution
21 distribution of elements
22 distribution properties
23 elements
24 estimates
25 intervals
26 kind
27 method
28 modulo p
29 non-trivial estimates
30 note
31 paper
32 primes
33 properties
34 short intervals
35 sum
36 schema:name A note on a kind of character sums over the short interval
37 schema:pagination 321-329
38 schema:productId Naff5b930cd78475fb2fd8495e4aae5f0
39 Ne68bc333f6b94014a537bd701c57bb23
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032597527
41 https://doi.org/10.1007/s12044-013-0129-4
42 schema:sdDatePublished 2022-01-01T18:30
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ncc79840311724096abe21dd5e676f4b0
45 schema:url https://doi.org/10.1007/s12044-013-0129-4
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N6459dc65573c4363a05967a5f5121d21 schema:volumeNumber 123
50 rdf:type schema:PublicationVolume
51 N64f7f2f29c644a7882c710e329c4cc00 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 N92d0471fe4294794beb2714170ba1128 rdf:first sg:person.011151534565.45
54 rdf:rest rdf:nil
55 Na2b5efbe8bcc4afebdda6c24784e225a rdf:first sg:person.014071323365.09
56 rdf:rest N92d0471fe4294794beb2714170ba1128
57 Naff5b930cd78475fb2fd8495e4aae5f0 schema:name doi
58 schema:value 10.1007/s12044-013-0129-4
59 rdf:type schema:PropertyValue
60 Ncc79840311724096abe21dd5e676f4b0 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ne68bc333f6b94014a537bd701c57bb23 schema:name dimensions_id
63 schema:value pub.1032597527
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1320093 schema:issn 0253-4142
72 0973-7685
73 schema:name Proceedings - Mathematical Sciences
74 schema:publisher Springer Nature
75 rdf:type schema:Periodical
76 sg:person.011151534565.45 schema:affiliation grid-institutes:grid.43169.39
77 schema:familyName ZHANG
78 schema:givenName YULONG
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45
80 rdf:type schema:Person
81 sg:person.014071323365.09 schema:affiliation grid-institutes:grid.440588.5
82 schema:familyName MA
83 schema:givenName RONG
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-1705-1_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089736780
87 https://doi.org/10.1007/978-1-4757-1705-1_46
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-1-4757-5579-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045686763
90 https://doi.org/10.1007/978-1-4757-5579-4
91 rdf:type schema:CreativeWork
92 grid-institutes:grid.43169.39 schema:alternateName The School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, People’s Republic of China
93 schema:name The School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, People’s Republic of China
94 rdf:type schema:Organization
95 grid-institutes:grid.440588.5 schema:alternateName School of Science, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, People’s Republic of China
96 schema:name School of Science, Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, People’s Republic of China
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...