On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-09

AUTHORS

Rong Ma, Junhuai Zhang, Yulong Zhang

ABSTRACT

Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a0 + a1x + ... + akxk is a k-degree polynomial with integral coefficients such that (p, a0, a1, ..., ak) = 1, for any integer m, we study the asymptotic property of where e(y) = e2πiy. The main purpose is to use the analytic method to study the 2m-th power mean of Dirichlet L-functions with the weight of the general trigonometric sums and give an interesting asymptotic formula. This result is an extension of the previous results. More... »

PAGES

411

References to SciGraph publications

  • 1991-10. Mean value of Dirichlet L-functions in the critical strip in LITHUANIAN MATHEMATICAL JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12044-009-0046-8

    DOI

    http://dx.doi.org/10.1007/s12044-009-0046-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031722255


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Rong", 
            "id": "sg:person.014071323365.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Junhuai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "The School of Electronic and Information Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yulong", 
            "id": "sg:person.011151534565.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/crll.1933.169.158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008063469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.34.5.204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013245505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jnth.2000.2515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015250670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00970796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025481191", 
              "https://doi.org/10.1007/bf00970796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/hah004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059988953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/os-18.1.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059989743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/os-3.1.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059989867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-57-02406-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064417243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1951-006-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072263745"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-09", 
        "datePublishedReg": "2009-09-01", 
        "description": "Let p be a prime, \u03c7 denote the Dirichlet character modulo p, f (x) = a0 + a1x + ... + akxk is a k-degree polynomial with integral coefficients such that (p, a0, a1, ..., ak) = 1, for any integer m, we study the asymptotic property of where e(y) = e2\u03c0iy. The main purpose is to use the analytic method to study the 2m-th power mean of Dirichlet L-functions with the weight of the general trigonometric sums and give an interesting asymptotic formula. This result is an extension of the previous results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12044-009-0046-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1320093", 
            "issn": [
              "2008-1359", 
              "2251-7456"
            ], 
            "name": "Proceedings - Mathematical Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "119"
          }
        ], 
        "name": "On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums", 
        "pagination": "411", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "971e314dd69a7e2689626c5f334e7147a561fd88f7e496a868a0df2c8728b7c4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12044-009-0046-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031722255"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12044-009-0046-8", 
          "https://app.dimensions.ai/details/publication/pub.1031722255"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12044-009-0046-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12044-009-0046-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12044-009-0046-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12044-009-0046-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12044-009-0046-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12044-009-0046-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N581891cb118540d1b3bcce8ed4ceb8ed
    4 schema:citation sg:pub.10.1007/bf00970796
    5 https://doi.org/10.1006/jnth.2000.2515
    6 https://doi.org/10.1073/pnas.34.5.204
    7 https://doi.org/10.1093/qmath/hah004
    8 https://doi.org/10.1093/qmath/os-18.1.133
    9 https://doi.org/10.1093/qmath/os-3.1.161
    10 https://doi.org/10.1215/s0012-7094-57-02406-7
    11 https://doi.org/10.1515/crll.1933.169.158
    12 https://doi.org/10.4153/cjm-1951-006-4
    13 schema:datePublished 2009-09
    14 schema:datePublishedReg 2009-09-01
    15 schema:description Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a0 + a1x + ... + akxk is a k-degree polynomial with integral coefficients such that (p, a0, a1, ..., ak) = 1, for any integer m, we study the asymptotic property of where e(y) = e2πiy. The main purpose is to use the analytic method to study the 2m-th power mean of Dirichlet L-functions with the weight of the general trigonometric sums and give an interesting asymptotic formula. This result is an extension of the previous results.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N27641a4d58a947769dc2f0d001d3b7d9
    20 Nef7ba12b6ecd4c7d94ac96a05e2d3851
    21 sg:journal.1320093
    22 schema:name On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums
    23 schema:pagination 411
    24 schema:productId N1e2408b91fed4cb98cba991168c7707e
    25 N6714a17e3b3246de9fa021ddb52d1a2c
    26 Nd6e04186be234464b315603564407e32
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031722255
    28 https://doi.org/10.1007/s12044-009-0046-8
    29 schema:sdDatePublished 2019-04-11T09:34
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N35e7654d118b401097a515c9a658fd16
    32 schema:url http://link.springer.com/10.1007%2Fs12044-009-0046-8
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0c50ce8f296f43ce8d9f67aec7acf168 rdf:first sg:person.011151534565.45
    37 rdf:rest rdf:nil
    38 N1e2408b91fed4cb98cba991168c7707e schema:name readcube_id
    39 schema:value 971e314dd69a7e2689626c5f334e7147a561fd88f7e496a868a0df2c8728b7c4
    40 rdf:type schema:PropertyValue
    41 N27641a4d58a947769dc2f0d001d3b7d9 schema:issueNumber 4
    42 rdf:type schema:PublicationIssue
    43 N35e7654d118b401097a515c9a658fd16 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N581891cb118540d1b3bcce8ed4ceb8ed rdf:first sg:person.014071323365.09
    46 rdf:rest Nc8cbd10ae8ec41a4bac2f80447291c86
    47 N6714a17e3b3246de9fa021ddb52d1a2c schema:name dimensions_id
    48 schema:value pub.1031722255
    49 rdf:type schema:PropertyValue
    50 N69f0e6e0ae4c4f2aa2d7b570be8f9a26 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    51 schema:familyName Zhang
    52 schema:givenName Junhuai
    53 rdf:type schema:Person
    54 Nc8cbd10ae8ec41a4bac2f80447291c86 rdf:first N69f0e6e0ae4c4f2aa2d7b570be8f9a26
    55 rdf:rest N0c50ce8f296f43ce8d9f67aec7acf168
    56 Nd6e04186be234464b315603564407e32 schema:name doi
    57 schema:value 10.1007/s12044-009-0046-8
    58 rdf:type schema:PropertyValue
    59 Nef7ba12b6ecd4c7d94ac96a05e2d3851 schema:volumeNumber 119
    60 rdf:type schema:PublicationVolume
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1320093 schema:issn 2008-1359
    68 2251-7456
    69 schema:name Proceedings - Mathematical Sciences
    70 rdf:type schema:Periodical
    71 sg:person.011151534565.45 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    72 schema:familyName Zhang
    73 schema:givenName Yulong
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151534565.45
    75 rdf:type schema:Person
    76 sg:person.014071323365.09 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    77 schema:familyName Ma
    78 schema:givenName Rong
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071323365.09
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf00970796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025481191
    82 https://doi.org/10.1007/bf00970796
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1006/jnth.2000.2515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015250670
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1073/pnas.34.5.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013245505
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1093/qmath/hah004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059988953
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1093/qmath/os-18.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059989743
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1093/qmath/os-3.1.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059989867
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1215/s0012-7094-57-02406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064417243
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1515/crll.1933.169.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008063469
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.4153/cjm-1951-006-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263745
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
    101 schema:name School of Science, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, People’s Republic of China
    102 The School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, People’s Republic of China
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...