Energy of electrons at the interaction of femtosecond laser with argon nanocluster View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Hossein Ghaforyan

ABSTRACT

The interaction of intense femtosecond laser pulses with argon nanoclusters is studied using nanoplasma model. Based on the dynamic simulations, ionisation process, heating, and expansion of an argon nanocluster irradiated by an intense femtosecond laser pulse are investigated. The analytical calculation provides ionisation rate for different mechanisms and time evolution of hydrodynamic pressure for various pulse shapes. In this work, the dependence of laser intensity, initial ion density and pulse shape on the electron pressure, the density of electrons and electron temperature are presented. It is noticed that the negative and positive chirped pulses and initial ion density implement some modifications on the current calculation models. It is found that reducing the initial ion density at a laser intensity of about 1×1016W/hboxcm2 increases the energy of electrons. By applying a positive chirp laser pulse during interaction with nanoclusters, both electron density and ultimately electron pressure are improved by about 22%. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12043-019-1734-2

DOI

http://dx.doi.org/10.1007/s12043-019-1734-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112964539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bonab", 
          "id": "https://www.grid.ac/institutes/grid.440821.b", 
          "name": [
            "Department of Optics and Laser Engineering, University of Bonab, 5551761167, Bonab, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghaforyan", 
        "givenName": "Hossein", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1080552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003484987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01393132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011011864", 
          "https://doi.org/10.1007/bf01393132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015213413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/2609160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016801803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4935340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022519553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063780x07060074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032057589", 
          "https://doi.org/10.1134/s1063780x07060074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2009.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036284133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(85)90151-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(85)90151-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-016-1350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042372771", 
          "https://doi.org/10.1007/s12043-016-1350-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-016-1350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042372771", 
          "https://doi.org/10.1007/s12043-016-1350-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034609990656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054086993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1469217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057709750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1677455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057753544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.330485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057934140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.366309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057994650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3666914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057995675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3673911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057997515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3692090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058002008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4734506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4916373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058093103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.3379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.3379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.053201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.053201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060504513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.045004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.045004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.033401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.033401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823409"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "The interaction of intense femtosecond laser pulses with argon nanoclusters is studied using nanoplasma model. Based on the dynamic simulations, ionisation process, heating, and expansion of an argon nanocluster irradiated by an intense femtosecond laser pulse are investigated. The analytical calculation provides ionisation rate for different mechanisms and time evolution of hydrodynamic pressure for various pulse shapes. In this work, the dependence of laser intensity, initial ion density and pulse shape on the electron pressure, the density of electrons and electron temperature are presented. It is noticed that the negative and positive chirped pulses and initial ion density implement some modifications on the current calculation models. It is found that reducing the initial ion density at a laser intensity of about 1\u00d71016W/hboxcm2 increases the energy of electrons. By applying a positive chirp laser pulse during interaction with nanoclusters, both electron density and ultimately electron pressure are improved by about 22%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12043-019-1734-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Energy of electrons at the interaction of femtosecond laser with argon nanocluster", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0695b2928c24e98b6133534368c28b8de6d8d4b0e474e590fb2adc7d8cd2193d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12043-019-1734-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112964539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12043-019-1734-2", 
      "https://app.dimensions.ai/details/publication/pub.1112964539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71704_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12043-019-1734-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-019-1734-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-019-1734-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-019-1734-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-019-1734-2'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12043-019-1734-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N65e9e3e3efde402f9f1b8358d2f676d0
4 schema:citation sg:pub.10.1007/bf01393132
5 sg:pub.10.1007/s12043-016-1350-3
6 sg:pub.10.1134/s1063780x07060074
7 https://doi.org/10.1016/0030-4018(85)90151-8
8 https://doi.org/10.1016/j.enconman.2009.09.017
9 https://doi.org/10.1017/s0263034609990656
10 https://doi.org/10.1063/1.1469217
11 https://doi.org/10.1063/1.1677455
12 https://doi.org/10.1063/1.330485
13 https://doi.org/10.1063/1.366309
14 https://doi.org/10.1063/1.3666914
15 https://doi.org/10.1063/1.3673911
16 https://doi.org/10.1063/1.3692090
17 https://doi.org/10.1063/1.4734506
18 https://doi.org/10.1063/1.4894777
19 https://doi.org/10.1063/1.4916373
20 https://doi.org/10.1063/1.4935340
21 https://doi.org/10.1103/physreva.53.3379
22 https://doi.org/10.1103/physreva.55.1182
23 https://doi.org/10.1103/physreva.77.053201
24 https://doi.org/10.1103/physreve.64.056402
25 https://doi.org/10.1103/physrevlett.100.045004
26 https://doi.org/10.1103/physrevlett.87.033401
27 https://doi.org/10.1126/science.1080552
28 https://doi.org/10.1155/2016/2609160
29 schema:datePublished 2019-05
30 schema:datePublishedReg 2019-05-01
31 schema:description The interaction of intense femtosecond laser pulses with argon nanoclusters is studied using nanoplasma model. Based on the dynamic simulations, ionisation process, heating, and expansion of an argon nanocluster irradiated by an intense femtosecond laser pulse are investigated. The analytical calculation provides ionisation rate for different mechanisms and time evolution of hydrodynamic pressure for various pulse shapes. In this work, the dependence of laser intensity, initial ion density and pulse shape on the electron pressure, the density of electrons and electron temperature are presented. It is noticed that the negative and positive chirped pulses and initial ion density implement some modifications on the current calculation models. It is found that reducing the initial ion density at a laser intensity of about 1×1016W/hboxcm2 increases the energy of electrons. By applying a positive chirp laser pulse during interaction with nanoclusters, both electron density and ultimately electron pressure are improved by about 22%.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N774253238c034d83976f9cd73b9f3424
36 Nffae329b3fd547c1a7de0be1e6282a12
37 sg:journal.1036186
38 schema:name Energy of electrons at the interaction of femtosecond laser with argon nanocluster
39 schema:pagination 81
40 schema:productId N3187a7d54fbd4a33ad6fabae86f989e8
41 N96a9925e93d84a8ab9bc5074fe298b3a
42 Ne1940b7d15cb4fd6a3ade30f87b19b7a
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112964539
44 https://doi.org/10.1007/s12043-019-1734-2
45 schema:sdDatePublished 2019-04-11T13:00
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nb87847eb80624472aa43828c42b74184
48 schema:url https://link.springer.com/10.1007%2Fs12043-019-1734-2
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N2865ea2620374f1aa194bafc70abebe4 schema:affiliation https://www.grid.ac/institutes/grid.440821.b
53 schema:familyName Ghaforyan
54 schema:givenName Hossein
55 rdf:type schema:Person
56 N3187a7d54fbd4a33ad6fabae86f989e8 schema:name readcube_id
57 schema:value 0695b2928c24e98b6133534368c28b8de6d8d4b0e474e590fb2adc7d8cd2193d
58 rdf:type schema:PropertyValue
59 N65e9e3e3efde402f9f1b8358d2f676d0 rdf:first N2865ea2620374f1aa194bafc70abebe4
60 rdf:rest rdf:nil
61 N774253238c034d83976f9cd73b9f3424 schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 N96a9925e93d84a8ab9bc5074fe298b3a schema:name dimensions_id
64 schema:value pub.1112964539
65 rdf:type schema:PropertyValue
66 Nb87847eb80624472aa43828c42b74184 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ne1940b7d15cb4fd6a3ade30f87b19b7a schema:name doi
69 schema:value 10.1007/s12043-019-1734-2
70 rdf:type schema:PropertyValue
71 Nffae329b3fd547c1a7de0be1e6282a12 schema:volumeNumber 92
72 rdf:type schema:PublicationVolume
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
77 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
78 rdf:type schema:DefinedTerm
79 sg:journal.1036186 schema:issn 0304-4289
80 0973-7111
81 schema:name Pramana
82 rdf:type schema:Periodical
83 sg:pub.10.1007/bf01393132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011011864
84 https://doi.org/10.1007/bf01393132
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s12043-016-1350-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042372771
87 https://doi.org/10.1007/s12043-016-1350-3
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s1063780x07060074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032057589
90 https://doi.org/10.1134/s1063780x07060074
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0030-4018(85)90151-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031687
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.enconman.2009.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284133
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s0263034609990656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054086993
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1469217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709750
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1677455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057753544
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.330485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057934140
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.366309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994650
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.3666914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057995675
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.3673911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057997515
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.3692090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058002008
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.4734506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054913
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.4894777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213413
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.4916373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058093103
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.4935340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022519553
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreva.53.3379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491423
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physreva.55.1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492336
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreva.77.053201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060504513
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreve.64.056402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727586
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.100.045004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752797
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.87.033401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823409
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.1080552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003484987
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1155/2016/2609160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016801803
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.440821.b schema:alternateName University of Bonab
137 schema:name Department of Optics and Laser Engineering, University of Bonab, 5551761167, Bonab, Iran
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...