Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-06

AUTHORS

W A Khan, A S Alshomrani, A K Alzahrani, M Khan, M Irfan

ABSTRACT

The pursuit of superior working liquids for heat / mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nanofluid, has been initiated over the last decade. In this paper, we present a comprehensive study of unsteady three-dimensional (3D) flow of the Eyring–Powell nanofluid under convective and nanoparticles mass flux conditions. The effects of constructive / destructive chemical reactions and nonlinear thermal radiation are also considered in the Eyring–Powell nanofluid model. Additionally, suitable transformations are utilised to obtain coupled ordinary differential equations (ODEs) from the system of partial differential equations (PDEs) and the numerical solution of the system of the coupled ODEs is obtained by means of the bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluids for various and converging values of physical parameters. Our findings demonstrate that the temperature of the Eyring–Powell nanofluid fall-off by changing the heat sink parameter. Furthermore, it is perceived from the sketches that the concentration of Eyring–Powell magneto-nanofluid decays at higher values of chemical reaction parameter. More... »

PAGES

63

References to SciGraph publications

  • 2017-09-01. Numerical investigation of magneto-nanoparticles for unsteady 3D generalized Newtonian liquid flow in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2017-04-20. Solutions with Wright Function for Time Fractional Free Convection Flow of Casson Fluid in ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
  • 2017-09-12. Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave in PRAMANA
  • 2015-12-12. Stretched flow of Carreau nanofluid with convective boundary condition in PRAMANA
  • 2017-02-23. Exact analysis of MHD flow of a Walters'-B fluid over an isothermal oscillating plate embedded in a porous medium in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2017-12-12. Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: A numerical study in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2014-12-11. Steady flow of Burgers’ nanofluid over a stretching surface with heat generation/absorption in JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
  • 2017-06-30. Numerically framing the impact of radiation on magnetonanoparticles for 3D Sisko fluid flow in JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
  • 2016-09-22. Effects of thermal stratification on transient free convective flow of a nanofluid past a vertical plate in PRAMANA
  • 2017-12-27. On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12043-018-1634-x

    DOI

    http://dx.doi.org/10.1007/s12043-018-1634-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106823067


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.440530.6", 
              "name": [
                "Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khan", 
            "givenName": "W A", 
            "id": "sg:person.07471022463.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471022463.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412125.1", 
              "name": [
                "NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alshomrani", 
            "givenName": "A S", 
            "id": "sg:person.07347446472.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347446472.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412125.1", 
              "name": [
                "NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alzahrani", 
            "givenName": "A K", 
            "id": "sg:person.012062320461.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062320461.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412621.2", 
              "name": [
                "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khan", 
            "givenName": "M", 
            "id": "sg:person.016031744323.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan", 
              "id": "http://www.grid.ac/institutes/grid.412621.2", 
              "name": [
                "Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Irfan", 
            "givenName": "M", 
            "id": "sg:person.010505271200.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505271200.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjp/i2017-11803-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099701734", 
              "https://doi.org/10.1140/epjp/i2017-11803-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-016-1266-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053251121", 
              "https://doi.org/10.1007/s12043-016-1266-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-017-0842-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090308365", 
              "https://doi.org/10.1007/s40430-017-0842-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2017-11809-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099924607", 
              "https://doi.org/10.1140/epjp/i2017-11809-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2017-11658-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091402285", 
              "https://doi.org/10.1140/epjp/i2017-11658-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40430-014-0290-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043174515", 
              "https://doi.org/10.1007/s40430-014-0290-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-015-1137-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038761642", 
              "https://doi.org/10.1007/s12043-015-1137-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13369-017-2521-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085004199", 
              "https://doi.org/10.1007/s13369-017-2521-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-017-1444-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091597207", 
              "https://doi.org/10.1007/s12043-017-1444-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2017-11404-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084226646", 
              "https://doi.org/10.1140/epjp/i2017-11404-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-06", 
        "datePublishedReg": "2018-09-06", 
        "description": "The pursuit of superior working liquids for heat\u00a0/\u00a0mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nanofluid, has been initiated over the last decade. In this paper, we present a comprehensive study of unsteady three-dimensional (3D) flow of the Eyring\u2013Powell nanofluid under convective and nanoparticles mass flux conditions. The effects of constructive\u00a0/\u00a0destructive chemical reactions and nonlinear thermal radiation are also considered in the Eyring\u2013Powell nanofluid model. Additionally, suitable transformations are utilised to obtain coupled ordinary differential equations (ODEs) from the system of partial differential equations (PDEs) and the numerical solution of the system of the coupled ODEs is obtained by means of the bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluids for various and converging values of physical parameters. Our findings demonstrate that the temperature of the Eyring\u2013Powell nanofluid fall-off by changing the heat sink parameter. Furthermore, it is perceived from the sketches that the concentration of Eyring\u2013Powell magneto-nanofluid decays at higher values of chemical reaction parameter.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12043-018-1634-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1036186", 
            "issn": [
              "0304-4289", 
              "0973-7111"
            ], 
            "name": "Pramana", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "keywords": [
          "Eyring-Powell nanofluid", 
          "magneto-nanofluid flow", 
          "nonlinear radiative heat transfer", 
          "heat sink parameters", 
          "radiative heat transfer", 
          "three-dimensional flow", 
          "nonlinear thermal radiation", 
          "mass flux conditions", 
          "nanoparticles mass flux conditions", 
          "mass transfer mechanisms", 
          "destructive chemical reaction", 
          "heat transfer", 
          "chemical reaction parameter", 
          "working liquid", 
          "nanofluid model", 
          "flux conditions", 
          "ordinary differential equations", 
          "bvp4c scheme", 
          "heat dissipation", 
          "thermal radiation", 
          "sink parameter", 
          "nanofluids", 
          "chemical reactions", 
          "partial differential equations", 
          "concentration profiles", 
          "numerical solution", 
          "transfer mechanism", 
          "physical parameters", 
          "extreme conditions", 
          "suitable transformation", 
          "numerical data", 
          "flow", 
          "differential equations", 
          "temperature", 
          "reaction parameters", 
          "heat", 
          "parameters", 
          "small amount", 
          "comprehensive study", 
          "higher values", 
          "equations", 
          "dissipation", 
          "engineering", 
          "liquid", 
          "conditions", 
          "nanoparticles", 
          "converging values", 
          "chemical separation", 
          "system", 
          "separation", 
          "transfer", 
          "solution", 
          "values", 
          "radiation", 
          "Eyring", 
          "model", 
          "last decade", 
          "scheme", 
          "amount", 
          "profile", 
          "products", 
          "means", 
          "effect", 
          "concentration", 
          "reaction", 
          "transformation", 
          "addition", 
          "mechanism", 
          "impact", 
          "rise", 
          "decay", 
          "data", 
          "study", 
          "decades", 
          "revenue", 
          "pursuit", 
          "sketch", 
          "findings", 
          "paper", 
          "superior working liquids", 
          "Eyring\u2013Powell nanofluid model", 
          "Eyring\u2013Powell magneto-nanofluid decays", 
          "magneto-nanofluid decays", 
          "autocatalysis chemical reaction", 
          "three-dimensional Eyring", 
          "Powell magneto-nanofluid flow"
        ], 
        "name": "Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring\u2013Powell magneto-nanofluid flow", 
        "pagination": "63", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106823067"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12043-018-1634-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12043-018-1634-x", 
          "https://app.dimensions.ai/details/publication/pub.1106823067"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_757.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12043-018-1634-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-018-1634-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-018-1634-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-018-1634-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-018-1634-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      22 PREDICATES      121 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12043-018-1634-x schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nfc2eaf58470d4c3b8a51ebd7aa751b76
    4 schema:citation sg:pub.10.1007/s12043-015-1137-y
    5 sg:pub.10.1007/s12043-016-1266-y
    6 sg:pub.10.1007/s12043-017-1444-6
    7 sg:pub.10.1007/s13369-017-2521-3
    8 sg:pub.10.1007/s40430-014-0290-4
    9 sg:pub.10.1007/s40430-017-0842-5
    10 sg:pub.10.1140/epjp/i2017-11404-2
    11 sg:pub.10.1140/epjp/i2017-11658-6
    12 sg:pub.10.1140/epjp/i2017-11803-3
    13 sg:pub.10.1140/epjp/i2017-11809-9
    14 schema:datePublished 2018-09-06
    15 schema:datePublishedReg 2018-09-06
    16 schema:description The pursuit of superior working liquids for heat / mass transfer mechanisms in engineering is on the rise, not only to maximise revenue but also to accommodate heat dissipation or chemical separation under extreme conditions. The addition of a small amount of nanoparticle, i.e. a product called nanofluid, has been initiated over the last decade. In this paper, we present a comprehensive study of unsteady three-dimensional (3D) flow of the Eyring–Powell nanofluid under convective and nanoparticles mass flux conditions. The effects of constructive / destructive chemical reactions and nonlinear thermal radiation are also considered in the Eyring–Powell nanofluid model. Additionally, suitable transformations are utilised to obtain coupled ordinary differential equations (ODEs) from the system of partial differential equations (PDEs) and the numerical solution of the system of the coupled ODEs is obtained by means of the bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluids for various and converging values of physical parameters. Our findings demonstrate that the temperature of the Eyring–Powell nanofluid fall-off by changing the heat sink parameter. Furthermore, it is perceived from the sketches that the concentration of Eyring–Powell magneto-nanofluid decays at higher values of chemical reaction parameter.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N1dcca1c1769d4298943209bd61e9174a
    21 N2e5cac8c13e24262bc8904acaab67797
    22 sg:journal.1036186
    23 schema:keywords Eyring
    24 Eyring-Powell nanofluid
    25 Eyring–Powell magneto-nanofluid decays
    26 Eyring–Powell nanofluid model
    27 Powell magneto-nanofluid flow
    28 addition
    29 amount
    30 autocatalysis chemical reaction
    31 bvp4c scheme
    32 chemical reaction parameter
    33 chemical reactions
    34 chemical separation
    35 comprehensive study
    36 concentration
    37 concentration profiles
    38 conditions
    39 converging values
    40 data
    41 decades
    42 decay
    43 destructive chemical reaction
    44 differential equations
    45 dissipation
    46 effect
    47 engineering
    48 equations
    49 extreme conditions
    50 findings
    51 flow
    52 flux conditions
    53 heat
    54 heat dissipation
    55 heat sink parameters
    56 heat transfer
    57 higher values
    58 impact
    59 last decade
    60 liquid
    61 magneto-nanofluid decays
    62 magneto-nanofluid flow
    63 mass flux conditions
    64 mass transfer mechanisms
    65 means
    66 mechanism
    67 model
    68 nanofluid model
    69 nanofluids
    70 nanoparticles
    71 nanoparticles mass flux conditions
    72 nonlinear radiative heat transfer
    73 nonlinear thermal radiation
    74 numerical data
    75 numerical solution
    76 ordinary differential equations
    77 paper
    78 parameters
    79 partial differential equations
    80 physical parameters
    81 products
    82 profile
    83 pursuit
    84 radiation
    85 radiative heat transfer
    86 reaction
    87 reaction parameters
    88 revenue
    89 rise
    90 scheme
    91 separation
    92 sink parameter
    93 sketch
    94 small amount
    95 solution
    96 study
    97 suitable transformation
    98 superior working liquids
    99 system
    100 temperature
    101 thermal radiation
    102 three-dimensional Eyring
    103 three-dimensional flow
    104 transfer
    105 transfer mechanism
    106 transformation
    107 values
    108 working liquid
    109 schema:name Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow
    110 schema:pagination 63
    111 schema:productId N6f27972326d14dfdaf48fea1e8ccda64
    112 Na8707793cbca48418c61610bbc0c94ef
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106823067
    114 https://doi.org/10.1007/s12043-018-1634-x
    115 schema:sdDatePublished 2021-12-01T19:39
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N96d7b9233b0548ed87a61de541ee611b
    118 schema:url https://doi.org/10.1007/s12043-018-1634-x
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N1dcca1c1769d4298943209bd61e9174a schema:issueNumber 5
    123 rdf:type schema:PublicationIssue
    124 N2e5cac8c13e24262bc8904acaab67797 schema:volumeNumber 91
    125 rdf:type schema:PublicationVolume
    126 N39a40ca39c6d49dc94f87f9475d685d8 rdf:first sg:person.016031744323.06
    127 rdf:rest Nb474b3d1fb2f464fb330e95a4889fb7a
    128 N6f27972326d14dfdaf48fea1e8ccda64 schema:name doi
    129 schema:value 10.1007/s12043-018-1634-x
    130 rdf:type schema:PropertyValue
    131 N834ee6457fb24f82bc6a8772544ccdb2 rdf:first sg:person.012062320461.97
    132 rdf:rest N39a40ca39c6d49dc94f87f9475d685d8
    133 N96d7b9233b0548ed87a61de541ee611b schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 Na8707793cbca48418c61610bbc0c94ef schema:name dimensions_id
    136 schema:value pub.1106823067
    137 rdf:type schema:PropertyValue
    138 Nb474b3d1fb2f464fb330e95a4889fb7a rdf:first sg:person.010505271200.36
    139 rdf:rest rdf:nil
    140 Nb644389ab37d415389de4f62ba2a7f73 rdf:first sg:person.07347446472.48
    141 rdf:rest N834ee6457fb24f82bc6a8772544ccdb2
    142 Nfc2eaf58470d4c3b8a51ebd7aa751b76 rdf:first sg:person.07471022463.23
    143 rdf:rest Nb644389ab37d415389de4f62ba2a7f73
    144 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Mathematical Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Physical Sciences
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1036186 schema:issn 0304-4289
    151 0973-7111
    152 schema:name Pramana
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.010505271200.36 schema:affiliation grid-institutes:grid.412621.2
    156 schema:familyName Irfan
    157 schema:givenName M
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505271200.36
    159 rdf:type schema:Person
    160 sg:person.012062320461.97 schema:affiliation grid-institutes:grid.412125.1
    161 schema:familyName Alzahrani
    162 schema:givenName A K
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062320461.97
    164 rdf:type schema:Person
    165 sg:person.016031744323.06 schema:affiliation grid-institutes:grid.412621.2
    166 schema:familyName Khan
    167 schema:givenName M
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06
    169 rdf:type schema:Person
    170 sg:person.07347446472.48 schema:affiliation grid-institutes:grid.412125.1
    171 schema:familyName Alshomrani
    172 schema:givenName A S
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347446472.48
    174 rdf:type schema:Person
    175 sg:person.07471022463.23 schema:affiliation grid-institutes:grid.440530.6
    176 schema:familyName Khan
    177 schema:givenName W A
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471022463.23
    179 rdf:type schema:Person
    180 sg:pub.10.1007/s12043-015-1137-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038761642
    181 https://doi.org/10.1007/s12043-015-1137-y
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s12043-016-1266-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053251121
    184 https://doi.org/10.1007/s12043-016-1266-y
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s12043-017-1444-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091597207
    187 https://doi.org/10.1007/s12043-017-1444-6
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s13369-017-2521-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085004199
    190 https://doi.org/10.1007/s13369-017-2521-3
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s40430-014-0290-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043174515
    193 https://doi.org/10.1007/s40430-014-0290-4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s40430-017-0842-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090308365
    196 https://doi.org/10.1007/s40430-017-0842-5
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1140/epjp/i2017-11404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226646
    199 https://doi.org/10.1140/epjp/i2017-11404-2
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1140/epjp/i2017-11658-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091402285
    202 https://doi.org/10.1140/epjp/i2017-11658-6
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1140/epjp/i2017-11803-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099701734
    205 https://doi.org/10.1140/epjp/i2017-11803-3
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1140/epjp/i2017-11809-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099924607
    208 https://doi.org/10.1140/epjp/i2017-11809-9
    209 rdf:type schema:CreativeWork
    210 grid-institutes:grid.412125.1 schema:alternateName NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
    211 schema:name NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
    212 rdf:type schema:Organization
    213 grid-institutes:grid.412621.2 schema:alternateName Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan
    214 schema:name Department of Mathematics, Quaid-i-Azam University, 44000, Islamabad, Pakistan
    215 rdf:type schema:Organization
    216 grid-institutes:grid.440530.6 schema:alternateName Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan
    217 schema:name Department of Mathematics and Statistics, Hazara University, 21300, Mansehra, Pakistan
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...