Design of multistable systems via partial synchronization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

Mohammad Ali Khan, Mayurakshi Nag, Swarup Poria

ABSTRACT

Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number (1≤i≤m-1) of state variables completely and keep constant difference between j (1≤j≤m-1, i+j=m) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme. More... »

PAGES

19

Journal

TITLE

Pramana

ISSUE

2

VOLUME

89

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12043-017-1422-z

DOI

http://dx.doi.org/10.1007/s12043-017-1422-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090355348


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Ramananda College, 722 122, Bishnupur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Mohammad Ali", 
        "id": "sg:person.015045101155.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045101155.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Applied Mathematics, University of Calcutta, 700 009, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nag", 
        "givenName": "Mayurakshi", 
        "id": "sg:person.015517600535.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517600535.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Applied Mathematics, University of Calcutta, 700 009, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poria", 
        "givenName": "Swarup", 
        "id": "sg:person.011724474424.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474424.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chaos.2007.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008479042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2004.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0779(97)00058-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012275440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1993)023<1670:meiago>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024390135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.166259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057740930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058622912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/88/01/015004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059003929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/89/04/045202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059004163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.035202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.035202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060743219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021812740200422x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number (1\u2264i\u2264m-1) of state variables completely and keep constant difference between j (1\u2264j\u2264m-1, i+j=m) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12043-017-1422-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "name": "Design of multistable systems via partial synchronization", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a1564d46211c8724cf7a7eb37ff40393b484e5f5d0b7134d3f292ee57d03328"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12043-017-1422-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090355348"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12043-017-1422-z", 
      "https://app.dimensions.ai/details/publication/pub.1090355348"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12043-017-1422-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-017-1422-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-017-1422-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-017-1422-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-017-1422-z'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12043-017-1422-z schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N1b1e182cb3bb4fa09c8f7eb65d5250ae
4 schema:citation https://doi.org/10.1016/j.chaos.2004.03.038
5 https://doi.org/10.1016/j.chaos.2007.08.039
6 https://doi.org/10.1016/s0960-0779(97)00058-1
7 https://doi.org/10.1063/1.166259
8 https://doi.org/10.1086/319929
9 https://doi.org/10.1088/0031-8949/88/01/015004
10 https://doi.org/10.1088/0031-8949/89/04/045202
11 https://doi.org/10.1103/physreva.28.3153
12 https://doi.org/10.1103/physrevb.50.1705
13 https://doi.org/10.1103/physreve.60.3876
14 https://doi.org/10.1103/physreve.85.035202
15 https://doi.org/10.1103/physrevlett.57.2861
16 https://doi.org/10.1103/physrevlett.64.1196
17 https://doi.org/10.1103/physrevlett.64.821
18 https://doi.org/10.1103/physrevlett.79.2911
19 https://doi.org/10.1142/s021812740200422x
20 https://doi.org/10.1175/1520-0485(1993)023<1670:meiago>2.0.co;2
21 schema:datePublished 2017-08
22 schema:datePublishedReg 2017-08-01
23 schema:description Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number (1≤i≤m-1) of state variables completely and keep constant difference between j (1≤j≤m-1, i+j=m) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Ndbab8a7ca656481584afb5fb0ae7397d
28 Ndce632227f744722b9003f454371dfea
29 sg:journal.1036186
30 schema:name Design of multistable systems via partial synchronization
31 schema:pagination 19
32 schema:productId N355bedf588c24ecc8285d7be872a8329
33 N9d2276bd25bb433b8ca38ceb03278bc8
34 Naa27e279aacf4e08a81034b9528ef2e7
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090355348
36 https://doi.org/10.1007/s12043-017-1422-z
37 schema:sdDatePublished 2019-04-11T10:00
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7030a306491d4744bef9c5997974f385
40 schema:url https://link.springer.com/10.1007%2Fs12043-017-1422-z
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1b1e182cb3bb4fa09c8f7eb65d5250ae rdf:first sg:person.015045101155.73
45 rdf:rest N5551d1c3bc21417a83c362d74fa90a8f
46 N355bedf588c24ecc8285d7be872a8329 schema:name readcube_id
47 schema:value 3a1564d46211c8724cf7a7eb37ff40393b484e5f5d0b7134d3f292ee57d03328
48 rdf:type schema:PropertyValue
49 N5551d1c3bc21417a83c362d74fa90a8f rdf:first sg:person.015517600535.15
50 rdf:rest Nfcdb41e3261a4e50ad22be157e3a1a95
51 N64a3ea0c008446aba83264a734355c48 schema:name Department of Mathematics, Ramananda College, 722 122, Bishnupur, India
52 rdf:type schema:Organization
53 N7030a306491d4744bef9c5997974f385 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N9d2276bd25bb433b8ca38ceb03278bc8 schema:name dimensions_id
56 schema:value pub.1090355348
57 rdf:type schema:PropertyValue
58 Naa27e279aacf4e08a81034b9528ef2e7 schema:name doi
59 schema:value 10.1007/s12043-017-1422-z
60 rdf:type schema:PropertyValue
61 Ndbab8a7ca656481584afb5fb0ae7397d schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 Ndce632227f744722b9003f454371dfea schema:volumeNumber 89
64 rdf:type schema:PublicationVolume
65 Nfcdb41e3261a4e50ad22be157e3a1a95 rdf:first sg:person.011724474424.32
66 rdf:rest rdf:nil
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
71 schema:name Applied Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1036186 schema:issn 0304-4289
74 0973-7111
75 schema:name Pramana
76 rdf:type schema:Periodical
77 sg:person.011724474424.32 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
78 schema:familyName Poria
79 schema:givenName Swarup
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474424.32
81 rdf:type schema:Person
82 sg:person.015045101155.73 schema:affiliation N64a3ea0c008446aba83264a734355c48
83 schema:familyName Khan
84 schema:givenName Mohammad Ali
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045101155.73
86 rdf:type schema:Person
87 sg:person.015517600535.15 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
88 schema:familyName Nag
89 schema:givenName Mayurakshi
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517600535.15
91 rdf:type schema:Person
92 https://doi.org/10.1016/j.chaos.2004.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851257
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.chaos.2007.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008479042
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0960-0779(97)00058-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012275440
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.166259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057740930
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/319929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058622912
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1088/0031-8949/88/01/015004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059003929
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0031-8949/89/04/045202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059004163
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physreva.28.3153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471518
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevb.50.1705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573286
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physreve.60.3876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724275
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreve.85.035202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743219
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.57.2861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794257
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.64.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800194
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.64.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800981
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.79.2911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816001
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1142/s021812740200422x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953704
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1175/1520-0485(1993)023<1670:meiago>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024390135
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.59056.3f schema:alternateName University of Calcutta
127 schema:name Department of Applied Mathematics, University of Calcutta, 700 009, Kolkata, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...