Multiple dynamical time-scales in networks with hierarchically nested modular organization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-03

AUTHORS

SITABHRA SINHA, SWARUP PORIA

ABSTRACT

Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales. More... »

PAGES

833-842

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12043-011-0196-y

DOI

http://dx.doi.org/10.1007/s12043-011-0196-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000485980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, Taramani, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, Taramani, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SINHA", 
        "givenName": "SITABHRA", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, 700 009, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, 700 009, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "PORIA", 
        "givenName": "SWARUP", 
        "id": "sg:person.011724474424.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474424.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052237145", 
          "https://doi.org/10.1038/nature07950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4751-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046796062", 
          "https://doi.org/10.1007/978-0-8176-4751-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-008-0166-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051358099", 
          "https://doi.org/10.1007/s12043-008-0166-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11-03", 
    "datePublishedReg": "2011-11-03", 
    "description": "Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12043-011-0196-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "hierarchical modular networks", 
      "modular networks", 
      "time-scale separation", 
      "process of synchronization", 
      "dynamical separation", 
      "topological structure", 
      "complex networks", 
      "elementary entities", 
      "simple model", 
      "earlier results", 
      "mesoscopic organization", 
      "constituent nodes", 
      "hierarchical levels", 
      "network", 
      "oscillator", 
      "next higher level", 
      "natural systems", 
      "dynamics", 
      "organization principles", 
      "such modularity", 
      "synchronization", 
      "existence", 
      "system", 
      "spatial scales", 
      "different hierarchical levels", 
      "different spatial scales", 
      "model", 
      "clustering", 
      "principles", 
      "modular organization", 
      "clusters", 
      "nodes", 
      "modularity", 
      "hierarchy", 
      "structure", 
      "process", 
      "module", 
      "results", 
      "scale", 
      "different levels", 
      "separation", 
      "viz", 
      "rise", 
      "levels", 
      "events", 
      "entities", 
      "role", 
      "organization", 
      "community", 
      "possible functional role", 
      "high levels", 
      "functional role"
    ], 
    "name": "Multiple dynamical time-scales in networks with hierarchically nested modular organization", 
    "pagination": "833-842", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000485980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12043-011-0196-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12043-011-0196-y", 
      "https://app.dimensions.ai/details/publication/pub.1000485980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_540.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12043-011-0196-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-011-0196-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-011-0196-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-011-0196-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-011-0196-y'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      82 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12043-011-0196-y schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nb71a2044e28f463786f8fd3e9679e70e
4 schema:citation sg:pub.10.1007/978-0-8176-4751-3_1
5 sg:pub.10.1007/s12043-008-0166-1
6 sg:pub.10.1038/30918
7 sg:pub.10.1038/35065725
8 sg:pub.10.1038/nature07950
9 schema:datePublished 2011-11-03
10 schema:datePublishedReg 2011-11-03
11 schema:description Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N36c867ef33b24ba2b14136240b683352
16 N3733535a15b0446ab543bd8732140d27
17 sg:journal.1036186
18 schema:keywords clustering
19 clusters
20 community
21 complex networks
22 constituent nodes
23 different hierarchical levels
24 different levels
25 different spatial scales
26 dynamical separation
27 dynamics
28 earlier results
29 elementary entities
30 entities
31 events
32 existence
33 functional role
34 hierarchical levels
35 hierarchical modular networks
36 hierarchy
37 high levels
38 levels
39 mesoscopic organization
40 model
41 modular networks
42 modular organization
43 modularity
44 module
45 natural systems
46 network
47 next higher level
48 nodes
49 organization
50 organization principles
51 oscillator
52 possible functional role
53 principles
54 process
55 process of synchronization
56 results
57 rise
58 role
59 scale
60 separation
61 simple model
62 spatial scales
63 structure
64 such modularity
65 synchronization
66 system
67 time-scale separation
68 topological structure
69 viz
70 schema:name Multiple dynamical time-scales in networks with hierarchically nested modular organization
71 schema:pagination 833-842
72 schema:productId N633dd00a288d49ea98ee8455c1c83237
73 N85ef66c63f0c4496b4eaaedd46cc430b
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000485980
75 https://doi.org/10.1007/s12043-011-0196-y
76 schema:sdDatePublished 2022-05-20T07:27
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ncdd56b3f020542d2b85a7c1f4c75e180
79 schema:url https://doi.org/10.1007/s12043-011-0196-y
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N15b4fa60607d42d297579a5094ae73f2 rdf:first sg:person.011724474424.32
84 rdf:rest rdf:nil
85 N36c867ef33b24ba2b14136240b683352 schema:issueNumber 5
86 rdf:type schema:PublicationIssue
87 N3733535a15b0446ab543bd8732140d27 schema:volumeNumber 77
88 rdf:type schema:PublicationVolume
89 N633dd00a288d49ea98ee8455c1c83237 schema:name doi
90 schema:value 10.1007/s12043-011-0196-y
91 rdf:type schema:PropertyValue
92 N85ef66c63f0c4496b4eaaedd46cc430b schema:name dimensions_id
93 schema:value pub.1000485980
94 rdf:type schema:PropertyValue
95 Nb71a2044e28f463786f8fd3e9679e70e rdf:first sg:person.01106420703.25
96 rdf:rest N15b4fa60607d42d297579a5094ae73f2
97 Ncdd56b3f020542d2b85a7c1f4c75e180 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1036186 schema:issn 0304-4289
106 0973-7111
107 schema:name Pramana
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
111 schema:familyName SINHA
112 schema:givenName SITABHRA
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
114 rdf:type schema:Person
115 sg:person.011724474424.32 schema:affiliation grid-institutes:grid.59056.3f
116 schema:familyName PORIA
117 schema:givenName SWARUP
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474424.32
119 rdf:type schema:Person
120 sg:pub.10.1007/978-0-8176-4751-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046796062
121 https://doi.org/10.1007/978-0-8176-4751-3_1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12043-008-0166-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051358099
124 https://doi.org/10.1007/s12043-008-0166-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
127 https://doi.org/10.1038/30918
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
130 https://doi.org/10.1038/35065725
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature07950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052237145
133 https://doi.org/10.1038/nature07950
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, Taramani, India
136 schema:name The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, Taramani, India
137 rdf:type schema:Organization
138 grid-institutes:grid.59056.3f schema:alternateName Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, 700 009, Kolkata, India
139 schema:name Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra Road, 700 009, Kolkata, India
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...