Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

C Dufour, K Dumesnil, P H Mangin

ABSTRACT

Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films. More... »

PAGES

173-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3

DOI

http://dx.doi.org/10.1007/s12043-006-0048-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040868243


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufour", 
        "givenName": "C", 
        "id": "sg:person.012315027175.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France", 
          "id": "http://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumesnil", 
        "givenName": "K", 
        "id": "sg:person.011517446575.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire L\u00e9on Brillouin, CEA Saclay, 91000, Gif sur Yvette C\u00e9dex, France", 
          "id": "http://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "Laboratoire L\u00e9on Brillouin, CEA Saclay, 91000, Gif sur Yvette C\u00e9dex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangin", 
        "givenName": "P H", 
        "id": "sg:person.011706252162.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12043-006-0048-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036186", 
        "issn": [
          "0304-4289", 
          "0973-7111"
        ], 
        "name": "Pramana", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "magnetic structure", 
      "complex magnetic phase diagram", 
      "magnetic properties", 
      "rare-earth films", 
      "magnetic phase diagram", 
      "new magnetic phase", 
      "propagation vector", 
      "magnetoelastic model", 
      "magnetic energy", 
      "magnetic phases", 
      "Tb films", 
      "Curie temperature", 
      "magnetic modulation", 
      "magnetic domains", 
      "phase diagram", 
      "molecular beam epitaxy", 
      "epitaxial films", 
      "neutron scattering", 
      "growth of Sm", 
      "Eu films", 
      "strain-induced modification", 
      "beam epitaxy", 
      "powerful technique", 
      "spectacular variations", 
      "dhcp phase", 
      "magnetostriction", 
      "epitaxy", 
      "films", 
      "low temperature", 
      "anisotropy", 
      "properties", 
      "structure", 
      "diagram", 
      "scattering", 
      "pseudomorphic strain", 
      "vector", 
      "model", 
      "rare earth", 
      "temperature", 
      "energy", 
      "technique", 
      "phase", 
      "Earth", 
      "first time", 
      "domain", 
      "Sm", 
      "dies", 
      "substrate induces", 
      "contribution", 
      "link", 
      "variation", 
      "time", 
      "modification", 
      "substrate", 
      "exchange", 
      "effect", 
      "modulation", 
      "competition", 
      "growth", 
      "induces", 
      "helix", 
      "clamping", 
      "review", 
      "strains"
    ], 
    "name": "Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films", 
    "pagination": "173-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040868243"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12043-006-0048-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12043-006-0048-3", 
      "https://app.dimensions.ai/details/publication/pub.1040868243"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12043-006-0048-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12043-006-0048-3 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N8fb6fa88a2d04f82ab66bb455394e606
4 schema:datePublished 2006-07
5 schema:datePublishedReg 2006-07-01
6 schema:description Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N9dbaeedccd8b489086ba5995638d2b23
11 Nb9b375592b64497d84231f68201ecb0c
12 sg:journal.1036186
13 schema:keywords Curie temperature
14 Earth
15 Eu films
16 Sm
17 Tb films
18 anisotropy
19 beam epitaxy
20 clamping
21 competition
22 complex magnetic phase diagram
23 contribution
24 dhcp phase
25 diagram
26 dies
27 domain
28 effect
29 energy
30 epitaxial films
31 epitaxy
32 exchange
33 films
34 first time
35 growth
36 growth of Sm
37 helix
38 induces
39 link
40 low temperature
41 magnetic domains
42 magnetic energy
43 magnetic modulation
44 magnetic phase diagram
45 magnetic phases
46 magnetic properties
47 magnetic structure
48 magnetoelastic model
49 magnetostriction
50 model
51 modification
52 modulation
53 molecular beam epitaxy
54 neutron scattering
55 new magnetic phase
56 phase
57 phase diagram
58 powerful technique
59 propagation vector
60 properties
61 pseudomorphic strain
62 rare earth
63 rare-earth films
64 review
65 scattering
66 spectacular variations
67 strain-induced modification
68 strains
69 structure
70 substrate
71 substrate induces
72 technique
73 temperature
74 time
75 variation
76 vector
77 schema:name Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films
78 schema:pagination 173-190
79 schema:productId N150f600d164b483fa33f2f0a062df3ab
80 Nf7666875954a4cb9b8d84ec97ec856fe
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040868243
82 https://doi.org/10.1007/s12043-006-0048-3
83 schema:sdDatePublished 2022-05-20T07:24
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nae79f0188c9c45f1a50116f1eefafa48
86 schema:url https://doi.org/10.1007/s12043-006-0048-3
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N150f600d164b483fa33f2f0a062df3ab schema:name dimensions_id
91 schema:value pub.1040868243
92 rdf:type schema:PropertyValue
93 N8fb6fa88a2d04f82ab66bb455394e606 rdf:first sg:person.012315027175.43
94 rdf:rest Ne5b8f5d5c2484e34b38dc9d5b136bc0c
95 N9dbaeedccd8b489086ba5995638d2b23 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Nae79f0188c9c45f1a50116f1eefafa48 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb9b375592b64497d84231f68201ecb0c schema:volumeNumber 67
100 rdf:type schema:PublicationVolume
101 Nce1a3aeaab334c66a9b5858dd11d7599 rdf:first sg:person.011706252162.43
102 rdf:rest rdf:nil
103 Ne5b8f5d5c2484e34b38dc9d5b136bc0c rdf:first sg:person.011517446575.66
104 rdf:rest Nce1a3aeaab334c66a9b5858dd11d7599
105 Nf7666875954a4cb9b8d84ec97ec856fe schema:name doi
106 schema:value 10.1007/s12043-006-0048-3
107 rdf:type schema:PropertyValue
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 sg:journal.1036186 schema:issn 0304-4289
115 0973-7111
116 schema:name Pramana
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.011517446575.66 schema:affiliation grid-institutes:grid.29172.3f
120 schema:familyName Dumesnil
121 schema:givenName K
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66
123 rdf:type schema:Person
124 sg:person.011706252162.43 schema:affiliation grid-institutes:grid.457334.2
125 schema:familyName Mangin
126 schema:givenName P H
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43
128 rdf:type schema:Person
129 sg:person.012315027175.43 schema:affiliation grid-institutes:grid.29172.3f
130 schema:familyName Dufour
131 schema:givenName C
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43
133 rdf:type schema:Person
134 grid-institutes:grid.29172.3f schema:alternateName Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre les Nancy Cédex, France
135 schema:name Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre les Nancy Cédex, France
136 rdf:type schema:Organization
137 grid-institutes:grid.457334.2 schema:alternateName Laboratoire Léon Brillouin, CEA Saclay, 91000, Gif sur Yvette Cédex, France
138 schema:name Laboratoire Léon Brillouin, CEA Saclay, 91000, Gif sur Yvette Cédex, France
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...