Ontology type: schema:ScholarlyArticle
2006-07
AUTHORSC Dufour, K Dumesnil, P H Mangin
ABSTRACTRare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films. More... »
PAGES173-190
http://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3
DOIhttp://dx.doi.org/10.1007/s12043-006-0048-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040868243
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France"
],
"type": "Organization"
},
"familyName": "Dufour",
"givenName": "C",
"id": "sg:person.012315027175.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre les Nancy C\u00e9dex, France"
],
"type": "Organization"
},
"familyName": "Dumesnil",
"givenName": "K",
"id": "sg:person.011517446575.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire L\u00e9on Brillouin, CEA Saclay, 91000, Gif sur Yvette C\u00e9dex, France",
"id": "http://www.grid.ac/institutes/grid.457334.2",
"name": [
"Laboratoire L\u00e9on Brillouin, CEA Saclay, 91000, Gif sur Yvette C\u00e9dex, France"
],
"type": "Organization"
},
"familyName": "Mangin",
"givenName": "P H",
"id": "sg:person.011706252162.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43"
],
"type": "Person"
}
],
"datePublished": "2006-07",
"datePublishedReg": "2006-07-01",
"description": "Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.",
"genre": "article",
"id": "sg:pub.10.1007/s12043-006-0048-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036186",
"issn": [
"0304-4289",
"0973-7111"
],
"name": "Pramana",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "67"
}
],
"keywords": [
"magnetic structure",
"complex magnetic phase diagram",
"magnetic properties",
"rare-earth films",
"magnetic phase diagram",
"new magnetic phase",
"propagation vector",
"magnetoelastic model",
"magnetic energy",
"magnetic phases",
"Tb films",
"Curie temperature",
"magnetic modulation",
"magnetic domains",
"phase diagram",
"molecular beam epitaxy",
"epitaxial films",
"neutron scattering",
"growth of Sm",
"Eu films",
"strain-induced modification",
"beam epitaxy",
"powerful technique",
"spectacular variations",
"dhcp phase",
"magnetostriction",
"epitaxy",
"films",
"low temperature",
"anisotropy",
"properties",
"structure",
"diagram",
"scattering",
"pseudomorphic strain",
"vector",
"model",
"rare earth",
"temperature",
"energy",
"technique",
"phase",
"Earth",
"first time",
"domain",
"Sm",
"dies",
"substrate induces",
"contribution",
"link",
"variation",
"time",
"modification",
"substrate",
"exchange",
"effect",
"modulation",
"competition",
"growth",
"induces",
"helix",
"clamping",
"review",
"strains"
],
"name": "Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films",
"pagination": "173-190",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040868243"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12043-006-0048-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12043-006-0048-3",
"https://app.dimensions.ai/details/publication/pub.1040868243"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_426.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12043-006-0048-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12043-006-0048-3'
This table displays all metadata directly associated to this object as RDF triples.
139 TRIPLES
21 PREDICATES
90 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12043-006-0048-3 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | N8fb6fa88a2d04f82ab66bb455394e606 |
4 | ″ | schema:datePublished | 2006-07 |
5 | ″ | schema:datePublishedReg | 2006-07-01 |
6 | ″ | schema:description | Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N9dbaeedccd8b489086ba5995638d2b23 |
11 | ″ | ″ | Nb9b375592b64497d84231f68201ecb0c |
12 | ″ | ″ | sg:journal.1036186 |
13 | ″ | schema:keywords | Curie temperature |
14 | ″ | ″ | Earth |
15 | ″ | ″ | Eu films |
16 | ″ | ″ | Sm |
17 | ″ | ″ | Tb films |
18 | ″ | ″ | anisotropy |
19 | ″ | ″ | beam epitaxy |
20 | ″ | ″ | clamping |
21 | ″ | ″ | competition |
22 | ″ | ″ | complex magnetic phase diagram |
23 | ″ | ″ | contribution |
24 | ″ | ″ | dhcp phase |
25 | ″ | ″ | diagram |
26 | ″ | ″ | dies |
27 | ″ | ″ | domain |
28 | ″ | ″ | effect |
29 | ″ | ″ | energy |
30 | ″ | ″ | epitaxial films |
31 | ″ | ″ | epitaxy |
32 | ″ | ″ | exchange |
33 | ″ | ″ | films |
34 | ″ | ″ | first time |
35 | ″ | ″ | growth |
36 | ″ | ″ | growth of Sm |
37 | ″ | ″ | helix |
38 | ″ | ″ | induces |
39 | ″ | ″ | link |
40 | ″ | ″ | low temperature |
41 | ″ | ″ | magnetic domains |
42 | ″ | ″ | magnetic energy |
43 | ″ | ″ | magnetic modulation |
44 | ″ | ″ | magnetic phase diagram |
45 | ″ | ″ | magnetic phases |
46 | ″ | ″ | magnetic properties |
47 | ″ | ″ | magnetic structure |
48 | ″ | ″ | magnetoelastic model |
49 | ″ | ″ | magnetostriction |
50 | ″ | ″ | model |
51 | ″ | ″ | modification |
52 | ″ | ″ | modulation |
53 | ″ | ″ | molecular beam epitaxy |
54 | ″ | ″ | neutron scattering |
55 | ″ | ″ | new magnetic phase |
56 | ″ | ″ | phase |
57 | ″ | ″ | phase diagram |
58 | ″ | ″ | powerful technique |
59 | ″ | ″ | propagation vector |
60 | ″ | ″ | properties |
61 | ″ | ″ | pseudomorphic strain |
62 | ″ | ″ | rare earth |
63 | ″ | ″ | rare-earth films |
64 | ″ | ″ | review |
65 | ″ | ″ | scattering |
66 | ″ | ″ | spectacular variations |
67 | ″ | ″ | strain-induced modification |
68 | ″ | ″ | strains |
69 | ″ | ″ | structure |
70 | ″ | ″ | substrate |
71 | ″ | ″ | substrate induces |
72 | ″ | ″ | technique |
73 | ″ | ″ | temperature |
74 | ″ | ″ | time |
75 | ″ | ″ | variation |
76 | ″ | ″ | vector |
77 | ″ | schema:name | Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films |
78 | ″ | schema:pagination | 173-190 |
79 | ″ | schema:productId | N150f600d164b483fa33f2f0a062df3ab |
80 | ″ | ″ | Nf7666875954a4cb9b8d84ec97ec856fe |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040868243 |
82 | ″ | ″ | https://doi.org/10.1007/s12043-006-0048-3 |
83 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | Nae79f0188c9c45f1a50116f1eefafa48 |
86 | ″ | schema:url | https://doi.org/10.1007/s12043-006-0048-3 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N150f600d164b483fa33f2f0a062df3ab | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1040868243 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N8fb6fa88a2d04f82ab66bb455394e606 | rdf:first | sg:person.012315027175.43 |
94 | ″ | rdf:rest | Ne5b8f5d5c2484e34b38dc9d5b136bc0c |
95 | N9dbaeedccd8b489086ba5995638d2b23 | schema:issueNumber | 1 |
96 | ″ | rdf:type | schema:PublicationIssue |
97 | Nae79f0188c9c45f1a50116f1eefafa48 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Nb9b375592b64497d84231f68201ecb0c | schema:volumeNumber | 67 |
100 | ″ | rdf:type | schema:PublicationVolume |
101 | Nce1a3aeaab334c66a9b5858dd11d7599 | rdf:first | sg:person.011706252162.43 |
102 | ″ | rdf:rest | rdf:nil |
103 | Ne5b8f5d5c2484e34b38dc9d5b136bc0c | rdf:first | sg:person.011517446575.66 |
104 | ″ | rdf:rest | Nce1a3aeaab334c66a9b5858dd11d7599 |
105 | Nf7666875954a4cb9b8d84ec97ec856fe | schema:name | doi |
106 | ″ | schema:value | 10.1007/s12043-006-0048-3 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Mathematical Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Physical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:journal.1036186 | schema:issn | 0304-4289 |
115 | ″ | ″ | 0973-7111 |
116 | ″ | schema:name | Pramana |
117 | ″ | schema:publisher | Springer Nature |
118 | ″ | rdf:type | schema:Periodical |
119 | sg:person.011517446575.66 | schema:affiliation | grid-institutes:grid.29172.3f |
120 | ″ | schema:familyName | Dumesnil |
121 | ″ | schema:givenName | K |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.011706252162.43 | schema:affiliation | grid-institutes:grid.457334.2 |
125 | ″ | schema:familyName | Mangin |
126 | ″ | schema:givenName | P H |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.012315027175.43 | schema:affiliation | grid-institutes:grid.29172.3f |
130 | ″ | schema:familyName | Dufour |
131 | ″ | schema:givenName | C |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43 |
133 | ″ | rdf:type | schema:Person |
134 | grid-institutes:grid.29172.3f | schema:alternateName | Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre les Nancy Cédex, France |
135 | ″ | schema:name | Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre les Nancy Cédex, France |
136 | ″ | rdf:type | schema:Organization |
137 | grid-institutes:grid.457334.2 | schema:alternateName | Laboratoire Léon Brillouin, CEA Saclay, 91000, Gif sur Yvette Cédex, France |
138 | ″ | schema:name | Laboratoire Léon Brillouin, CEA Saclay, 91000, Gif sur Yvette Cédex, France |
139 | ″ | rdf:type | schema:Organization |