Application of high resolution SNP arrays in patients with congenital oral clefts in south China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

TING-YING LEI, HONG-TAO WANG, FAN LI, YING-QIU CUI, FANG FU, RU LI, CAN LIAO

ABSTRACT

Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts. More... »

PAGES

801-809

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12041-016-0696-0

DOI

http://dx.doi.org/10.1007/s12041-016-0696-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020991833

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27994178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Aberrations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Banding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cleft Lip", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cleft Palate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Syndrome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangzhou Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410737.6", 
          "name": [
            "Department of Prenatal Diagnostic Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LEI", 
        "givenName": "TING-YING", 
        "id": "sg:person.012725106365.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725106365.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Stomatology, Guangzhou Women and Children\u2019s Medical Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WANG", 
        "givenName": "HONG-TAO", 
        "id": "sg:person.016374422041.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374422041.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Stomatology, Guangzhou Women and Children\u2019s Medical Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LI", 
        "givenName": "FAN", 
        "id": "sg:person.07671350641.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671350641.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Stomatology, Guangzhou Women and Children\u2019s Medical Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "CUI", 
        "givenName": "YING-QIU", 
        "id": "sg:person.010466731241.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010466731241.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410737.6", 
          "name": [
            "Department of Prenatal Diagnostic Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "FU", 
        "givenName": "FANG", 
        "id": "sg:person.01305245716.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305245716.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410737.6", 
          "name": [
            "Department of Prenatal Diagnostic Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LI", 
        "givenName": "RU", 
        "id": "sg:person.0601154002.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601154002.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410737.6", 
          "name": [
            "Department of Prenatal Diagnostic Center, Guangzhou Medical University, 510623, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LIAO", 
        "givenName": "CAN", 
        "id": "sg:person.0711005747.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711005747.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/jmg.2009.075853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000469964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1531-8249(200011)48:5<737::aid-ana7>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003639117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddh052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004857592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m313814200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005157990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2353/jmoldx.2010.090115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006125748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2011.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006611069", 
          "https://doi.org/10.1038/ejhg.2011.174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmg.2008.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)60695-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009513036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmedgenet-2012-101013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010991045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021369761", 
          "https://doi.org/10.1038/ng.581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1597/1545-1569(2002)039<0093:gftdaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021590688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.35848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021733033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1531-8257(200009)15:5<884::aid-mds1019>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022057995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.209338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022873211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2011.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024240303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8166-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025554563", 
          "https://doi.org/10.1186/1755-8166-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8166-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025554563", 
          "https://doi.org/10.1186/1755-8166-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.30984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026346291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.30984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026346291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409761", 
          "https://doi.org/10.1038/2524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409761", 
          "https://doi.org/10.1038/2524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/tera.1420430306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028921630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/tera.1420430306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028921630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13353-013-0181-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029108203", 
          "https://doi.org/10.1007/s13353-013-0181-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.12382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029176623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030799202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030799202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2013.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031213738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2007.049510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032332016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0607956104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035270992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/10.16.1649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035432966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.21.4274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035816876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.32644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037077951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.31673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037191722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2009.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041064054", 
          "https://doi.org/10.1038/ejhg.2009.163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000318567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043655910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.31740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043795390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)14632-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044110973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)14632-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044110973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.31226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045992713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2005.00248.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047703114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1597/06-250.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047861425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1597/06-250.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047861425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/gim.0b013e3181f8baad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048163304", 
          "https://doi.org/10.1097/gim.0b013e3181f8baad"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/gim.0b013e3181f8baad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048163304", 
          "https://doi.org/10.1097/gim.0b013e3181f8baad"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.32814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050312252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajmg.a.32814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050312252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1375/twin.12.5.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051166164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000368878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1597/08-150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1597/08-150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052627206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058609631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058609985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/491719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058776355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/491719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058776355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1359641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062477301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000049470.00180.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000049470.00180.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000049470.00180.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083386871", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.36.1.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083386871"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12041-016-0696-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1077130", 
        "issn": [
          "0022-1333", 
          "0973-7731"
        ], 
        "name": "Journal of Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "Application of high resolution SNP arrays in patients with congenital oral clefts in south China", 
    "pagination": "801-809", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64045a79719c3148730c3b21024bbcddb9b5a4a27e2677bae1e5cdb7e19a3e2b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27994178"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "2985113R"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12041-016-0696-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020991833"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12041-016-0696-0", 
      "https://app.dimensions.ai/details/publication/pub.1020991833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12041-016-0696-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12041-016-0696-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12041-016-0696-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12041-016-0696-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12041-016-0696-0'


 

This table displays all metadata directly associated to this object as RDF triples.

339 TRIPLES      21 PREDICATES      95 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12041-016-0696-0 schema:about N005747e9124042cfa0a603daa2a2e676
2 N1a229e5f5d2f448cb0c4548824f256f9
3 N251be080bfee418f80654c7060bf8124
4 N266f8f26e3174d5bb9c73928e4f16ac3
5 N26dc9d9b58a7487f8a44743a6569d412
6 N43c61d20a75f4663817322167dce0e6c
7 N4c855b9ac1ab4aa4abfd5a33e8d75f0f
8 N58ef5539fccf45f4bc712dbf867ba4e7
9 N664947c3b31c4254bbc305c8be2a4a57
10 N6c62d4ab364d4ca7a87091eba69216bc
11 N6dc558a0bc11432285fb835ba12d6def
12 N940057b923a94200b57e0d9760534088
13 N94b97505cddc4811b7e1d4cb3e71e9a7
14 N97e9f2726a6c4e30b58d8ed65c31883c
15 N9e9479a535544575ae8230b527a8ff72
16 Nd6385c306bce4fcc8fbf0f6d61a7c362
17 Nd76c0085465d447bb512fed23ceabe7b
18 Nf0ffd5060fcd43e0815803fc52626242
19 anzsrc-for:06
20 anzsrc-for:0604
21 schema:author N73b9f66a3e7046eda352cb35fc8e129f
22 schema:citation sg:pub.10.1007/s13353-013-0181-x
23 sg:pub.10.1038/2524
24 sg:pub.10.1038/ejhg.2009.163
25 sg:pub.10.1038/ejhg.2011.174
26 sg:pub.10.1038/ng.581
27 sg:pub.10.1097/gim.0b013e3181f8baad
28 sg:pub.10.1186/1755-8166-6-31
29 https://app.dimensions.ai/details/publication/pub.1083386871
30 https://doi.org/10.1002/1531-8249(200011)48:5<737::aid-ana7>3.0.co;2-d
31 https://doi.org/10.1002/1531-8257(200009)15:5<884::aid-mds1019>3.0.co;2-8
32 https://doi.org/10.1002/ajmg.a.30984
33 https://doi.org/10.1002/ajmg.a.31226
34 https://doi.org/10.1002/ajmg.a.31673
35 https://doi.org/10.1002/ajmg.a.31740
36 https://doi.org/10.1002/ajmg.a.32644
37 https://doi.org/10.1002/ajmg.a.32814
38 https://doi.org/10.1002/ajmg.a.35848
39 https://doi.org/10.1002/tera.1420430306
40 https://doi.org/10.1016/j.ajhg.2011.10.008
41 https://doi.org/10.1016/j.ajhg.2013.01.006
42 https://doi.org/10.1016/j.ejmg.2008.09.007
43 https://doi.org/10.1016/s0140-6736(03)14632-6
44 https://doi.org/10.1016/s0140-6736(09)60695-4
45 https://doi.org/10.1073/pnas.0607956104
46 https://doi.org/10.1074/jbc.m110.209338
47 https://doi.org/10.1074/jbc.m313814200
48 https://doi.org/10.1086/302041
49 https://doi.org/10.1086/302410
50 https://doi.org/10.1086/491719
51 https://doi.org/10.1093/aje/kwi214
52 https://doi.org/10.1093/hmg/10.16.1649
53 https://doi.org/10.1093/hmg/ddh052
54 https://doi.org/10.1093/nar/29.21.4274
55 https://doi.org/10.1111/1471-0528.12382
56 https://doi.org/10.1111/j.1469-1809.2005.00248.x
57 https://doi.org/10.1126/science.1359641
58 https://doi.org/10.1136/jmedgenet-2012-101013
59 https://doi.org/10.1136/jmg.2007.049510
60 https://doi.org/10.1136/jmg.2009.075853
61 https://doi.org/10.1136/jmg.36.1.71
62 https://doi.org/10.1159/000318567
63 https://doi.org/10.1159/000368878
64 https://doi.org/10.1212/01.wnl.0000049470.00180.07
65 https://doi.org/10.1375/twin.12.5.462
66 https://doi.org/10.1597/06-250.1
67 https://doi.org/10.1597/08-150
68 https://doi.org/10.1597/1545-1569(2002)039<0093:gftdaa>2.0.co;2
69 https://doi.org/10.2353/jmoldx.2010.090115
70 schema:datePublished 2016-12
71 schema:datePublishedReg 2016-12-01
72 schema:description Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree false
76 schema:isPartOf N27e91ddb4a2b4fe9841608f7f643ba03
77 Na9f24e829adc43e6882b5a719d915745
78 sg:journal.1077130
79 schema:name Application of high resolution SNP arrays in patients with congenital oral clefts in south China
80 schema:pagination 801-809
81 schema:productId N0a7637ee0d6f459d804dd00f36dfbef2
82 N45219c555c8c42e39a23cbc5ad469aca
83 N94765aaa41484465bef2740f90843c5f
84 Nb83f6d9239684ac8be5f856ac3b5d869
85 Nd6b2ae0c319e413e932257b693796ff1
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020991833
87 https://doi.org/10.1007/s12041-016-0696-0
88 schema:sdDatePublished 2019-04-11T12:23
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N6edadd85f7904b7e88a4921f89c21e5c
91 schema:url https://link.springer.com/10.1007%2Fs12041-016-0696-0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N005747e9124042cfa0a603daa2a2e676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name DNA Copy Number Variations
97 rdf:type schema:DefinedTerm
98 N0a7637ee0d6f459d804dd00f36dfbef2 schema:name readcube_id
99 schema:value 64045a79719c3148730c3b21024bbcddb9b5a4a27e2677bae1e5cdb7e19a3e2b
100 rdf:type schema:PropertyValue
101 N1a229e5f5d2f448cb0c4548824f256f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Male
103 rdf:type schema:DefinedTerm
104 N2498c955dfb6433e8bc690ccba7549d6 schema:name Department of Stomatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 510623, Guangdong, People’s Republic of China
105 rdf:type schema:Organization
106 N251be080bfee418f80654c7060bf8124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 N265e57e055d246f09c693a9a297f27d4 rdf:first sg:person.010466731241.39
110 rdf:rest N5a2824831daa4e7fbd21a6ae6e15cb7e
111 N266f8f26e3174d5bb9c73928e4f16ac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Chromosome Banding
113 rdf:type schema:DefinedTerm
114 N26dc9d9b58a7487f8a44743a6569d412 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Genetic Association Studies
116 rdf:type schema:DefinedTerm
117 N27e91ddb4a2b4fe9841608f7f643ba03 schema:volumeNumber 95
118 rdf:type schema:PublicationVolume
119 N43c61d20a75f4663817322167dce0e6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cleft Lip
121 rdf:type schema:DefinedTerm
122 N45219c555c8c42e39a23cbc5ad469aca schema:name dimensions_id
123 schema:value pub.1020991833
124 rdf:type schema:PropertyValue
125 N4c855b9ac1ab4aa4abfd5a33e8d75f0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Genomics
127 rdf:type schema:DefinedTerm
128 N58ef5539fccf45f4bc712dbf867ba4e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Databases, Genetic
130 rdf:type schema:DefinedTerm
131 N5a2824831daa4e7fbd21a6ae6e15cb7e rdf:first sg:person.01305245716.94
132 rdf:rest Nba4a4abc56924864968cd3fc4c484572
133 N664947c3b31c4254bbc305c8be2a4a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 N6c3d375daf184faf8b60cd6d8038f98a schema:name Department of Stomatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 510623, Guangdong, People’s Republic of China
137 rdf:type schema:Organization
138 N6c62d4ab364d4ca7a87091eba69216bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Infant
140 rdf:type schema:DefinedTerm
141 N6dc558a0bc11432285fb835ba12d6def schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Child, Preschool
143 rdf:type schema:DefinedTerm
144 N6edadd85f7904b7e88a4921f89c21e5c schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N73b9f66a3e7046eda352cb35fc8e129f rdf:first sg:person.012725106365.50
147 rdf:rest Nb1fc1b03d4f34d0d9879d28059fcf05d
148 N940057b923a94200b57e0d9760534088 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Chromosome Mapping
150 rdf:type schema:DefinedTerm
151 N94765aaa41484465bef2740f90843c5f schema:name nlm_unique_id
152 schema:value 2985113R
153 rdf:type schema:PropertyValue
154 N94b97505cddc4811b7e1d4cb3e71e9a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Syndrome
156 rdf:type schema:DefinedTerm
157 N97e9f2726a6c4e30b58d8ed65c31883c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Phenotype
159 rdf:type schema:DefinedTerm
160 N9e9479a535544575ae8230b527a8ff72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Child
162 rdf:type schema:DefinedTerm
163 N9ff30d80b389443cabc7cd298e561026 rdf:first sg:person.0711005747.28
164 rdf:rest rdf:nil
165 Na9f24e829adc43e6882b5a719d915745 schema:issueNumber 4
166 rdf:type schema:PublicationIssue
167 Nb1fc1b03d4f34d0d9879d28059fcf05d rdf:first sg:person.016374422041.11
168 rdf:rest Nb6cfd126e662459b9313e81d2d2dfb99
169 Nb3f55faf3a9745be9778851bba7864ae schema:name Department of Stomatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 510623, Guangdong, People’s Republic of China
170 rdf:type schema:Organization
171 Nb6cfd126e662459b9313e81d2d2dfb99 rdf:first sg:person.07671350641.23
172 rdf:rest N265e57e055d246f09c693a9a297f27d4
173 Nb83f6d9239684ac8be5f856ac3b5d869 schema:name doi
174 schema:value 10.1007/s12041-016-0696-0
175 rdf:type schema:PropertyValue
176 Nba4a4abc56924864968cd3fc4c484572 rdf:first sg:person.0601154002.48
177 rdf:rest N9ff30d80b389443cabc7cd298e561026
178 Nd6385c306bce4fcc8fbf0f6d61a7c362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Chromosome Aberrations
180 rdf:type schema:DefinedTerm
181 Nd6b2ae0c319e413e932257b693796ff1 schema:name pubmed_id
182 schema:value 27994178
183 rdf:type schema:PropertyValue
184 Nd76c0085465d447bb512fed23ceabe7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Cleft Palate
186 rdf:type schema:DefinedTerm
187 Nf0ffd5060fcd43e0815803fc52626242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Polymorphism, Single Nucleotide
189 rdf:type schema:DefinedTerm
190 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biological Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
194 schema:name Genetics
195 rdf:type schema:DefinedTerm
196 sg:journal.1077130 schema:issn 0022-1333
197 0973-7731
198 schema:name Journal of Genetics
199 rdf:type schema:Periodical
200 sg:person.010466731241.39 schema:affiliation N6c3d375daf184faf8b60cd6d8038f98a
201 schema:familyName CUI
202 schema:givenName YING-QIU
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010466731241.39
204 rdf:type schema:Person
205 sg:person.012725106365.50 schema:affiliation https://www.grid.ac/institutes/grid.410737.6
206 schema:familyName LEI
207 schema:givenName TING-YING
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725106365.50
209 rdf:type schema:Person
210 sg:person.01305245716.94 schema:affiliation https://www.grid.ac/institutes/grid.410737.6
211 schema:familyName FU
212 schema:givenName FANG
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305245716.94
214 rdf:type schema:Person
215 sg:person.016374422041.11 schema:affiliation Nb3f55faf3a9745be9778851bba7864ae
216 schema:familyName WANG
217 schema:givenName HONG-TAO
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374422041.11
219 rdf:type schema:Person
220 sg:person.0601154002.48 schema:affiliation https://www.grid.ac/institutes/grid.410737.6
221 schema:familyName LI
222 schema:givenName RU
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601154002.48
224 rdf:type schema:Person
225 sg:person.0711005747.28 schema:affiliation https://www.grid.ac/institutes/grid.410737.6
226 schema:familyName LIAO
227 schema:givenName CAN
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711005747.28
229 rdf:type schema:Person
230 sg:person.07671350641.23 schema:affiliation N2498c955dfb6433e8bc690ccba7549d6
231 schema:familyName LI
232 schema:givenName FAN
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671350641.23
234 rdf:type schema:Person
235 sg:pub.10.1007/s13353-013-0181-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029108203
236 https://doi.org/10.1007/s13353-013-0181-x
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409761
239 https://doi.org/10.1038/2524
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/ejhg.2009.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041064054
242 https://doi.org/10.1038/ejhg.2009.163
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/ejhg.2011.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006611069
245 https://doi.org/10.1038/ejhg.2011.174
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/ng.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021369761
248 https://doi.org/10.1038/ng.581
249 rdf:type schema:CreativeWork
250 sg:pub.10.1097/gim.0b013e3181f8baad schema:sameAs https://app.dimensions.ai/details/publication/pub.1048163304
251 https://doi.org/10.1097/gim.0b013e3181f8baad
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1755-8166-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025554563
254 https://doi.org/10.1186/1755-8166-6-31
255 rdf:type schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1083386871 schema:CreativeWork
257 https://doi.org/10.1002/1531-8249(200011)48:5<737::aid-ana7>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639117
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/1531-8257(200009)15:5<884::aid-mds1019>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022057995
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/ajmg.a.30984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026346291
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/ajmg.a.31226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045992713
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/ajmg.a.31673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037191722
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/ajmg.a.31740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043795390
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/ajmg.a.32644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037077951
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1002/ajmg.a.32814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050312252
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1002/ajmg.a.35848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021733033
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1002/tera.1420430306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028921630
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.ajhg.2011.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024240303
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.ajhg.2013.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031213738
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/j.ejmg.2008.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477923
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/s0140-6736(03)14632-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044110973
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1016/s0140-6736(09)60695-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009513036
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1073/pnas.0607956104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035270992
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1074/jbc.m110.209338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022873211
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1074/jbc.m313814200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005157990
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1086/302041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609631
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1086/302410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609985
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1086/491719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058776355
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/aje/kwi214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030799202
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/hmg/10.16.1649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035432966
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1093/hmg/ddh052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004857592
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1093/nar/29.21.4274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035816876
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1111/1471-0528.12382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176623
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1111/j.1469-1809.2005.00248.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047703114
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1126/science.1359641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477301
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1136/jmedgenet-2012-101013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010991045
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1136/jmg.2007.049510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332016
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1136/jmg.2009.075853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000469964
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1136/jmg.36.1.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083386871
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1159/000318567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043655910
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1159/000368878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372623
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1212/01.wnl.0000049470.00180.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064344955
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1375/twin.12.5.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051166164
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1597/06-250.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047861425
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1597/08-150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052627206
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1597/1545-1569(2002)039<0093:gftdaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021590688
334 rdf:type schema:CreativeWork
335 https://doi.org/10.2353/jmoldx.2010.090115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125748
336 rdf:type schema:CreativeWork
337 https://www.grid.ac/institutes/grid.410737.6 schema:alternateName Guangzhou Medical University
338 schema:name Department of Prenatal Diagnostic Center, Guangzhou Medical University, 510623, Guangdong, People’s Republic of China
339 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...