Monitoring agricultural drought using combined drought index in India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-07-09

AUTHORS

N Chattopadhyay, K Malathi, Nivedita Tidke, S D Attri, Kamaljit Ray

ABSTRACT

Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices. More... »

PAGES

155

References to SciGraph publications

  • 2013-12-20. Global warming and changes in drought in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w

    DOI

    http://dx.doi.org/10.1007/s12040-020-01417-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129131212


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chattopadhyay", 
            "givenName": "N", 
            "id": "sg:person.014171723724.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 411 005, Pune, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 411 005, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malathi", 
            "givenName": "K", 
            "id": "sg:person.012174001757.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012174001757.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 411 005, Pune, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 411 005, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tidke", 
            "givenName": "Nivedita", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, IMD, 110 003, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, IMD, 110 003, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Attri", 
            "givenName": "S D", 
            "id": "sg:person.016114157161.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.453080.a", 
              "name": [
                "Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ray", 
            "givenName": "Kamaljit", 
            "id": "sg:person.07714073223.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714073223.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate2067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027365474", 
              "https://doi.org/10.1038/nclimate2067"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-09", 
        "datePublishedReg": "2020-07-09", 
        "description": "Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12040-020-01417-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136531", 
            "issn": [
              "2347-4327", 
              "0253-4126"
            ], 
            "name": "Journal of Earth System Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "keywords": [
          "Combined Drought Index", 
          "agricultural drought", 
          "drought indices", 
          "drought-like situations", 
          "remote sensing observations", 
          "remote sensing", 
          "geospatial technologies", 
          "drought conditions", 
          "drought situation", 
          "sensing observations", 
          "drought", 
          "consecutive years", 
          "monsoon season", 
          "southwest monsoon season", 
          "synoptic overview", 
          "number of indices", 
          "kharif crops", 
          "individual indices", 
          "land", 
          "classification scheme", 
          "India", 
          "crops", 
          "season", 
          "index", 
          "district level", 
          "exploitation", 
          "new data", 
          "sensing", 
          "monitoring", 
          "metrics", 
          "efforts", 
          "colonial period", 
          "period data", 
          "data", 
          "study", 
          "present study", 
          "years", 
          "period", 
          "conditions", 
          "number", 
          "information", 
          "situation", 
          "efficient way", 
          "state", 
          "evolution", 
          "levels", 
          "observations", 
          "methodology", 
          "overview", 
          "space", 
          "time", 
          "way", 
          "experts", 
          "long-period data", 
          "good judgment", 
          "technology", 
          "scheme", 
          "strength", 
          "judgments", 
          "onset", 
          "regional-scale drought conditions", 
          "rainfed kharif crops"
        ], 
        "name": "Monitoring agricultural drought using combined drought index in India", 
        "pagination": "155", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129131212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12040-020-01417-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12040-020-01417-w", 
          "https://app.dimensions.ai/details/publication/pub.1129131212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_832.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12040-020-01417-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      22 PREDICATES      91 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12040-020-01417-w schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 anzsrc-for:04
    4 anzsrc-for:0403
    5 anzsrc-for:0406
    6 schema:author Na165fdd887654410be5098740e331577
    7 schema:citation sg:pub.10.1038/nclimate2067
    8 schema:datePublished 2020-07-09
    9 schema:datePublishedReg 2020-07-09
    10 schema:description Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N04089c264f2841dfa21a8dba70250832
    15 N2c0748ff6e734f02897f9a9a16b2e4ca
    16 sg:journal.1136531
    17 schema:keywords Combined Drought Index
    18 India
    19 agricultural drought
    20 classification scheme
    21 colonial period
    22 conditions
    23 consecutive years
    24 crops
    25 data
    26 district level
    27 drought
    28 drought conditions
    29 drought indices
    30 drought situation
    31 drought-like situations
    32 efficient way
    33 efforts
    34 evolution
    35 experts
    36 exploitation
    37 geospatial technologies
    38 good judgment
    39 index
    40 individual indices
    41 information
    42 judgments
    43 kharif crops
    44 land
    45 levels
    46 long-period data
    47 methodology
    48 metrics
    49 monitoring
    50 monsoon season
    51 new data
    52 number
    53 number of indices
    54 observations
    55 onset
    56 overview
    57 period
    58 period data
    59 present study
    60 rainfed kharif crops
    61 regional-scale drought conditions
    62 remote sensing
    63 remote sensing observations
    64 scheme
    65 season
    66 sensing
    67 sensing observations
    68 situation
    69 southwest monsoon season
    70 space
    71 state
    72 strength
    73 study
    74 synoptic overview
    75 technology
    76 time
    77 way
    78 years
    79 schema:name Monitoring agricultural drought using combined drought index in India
    80 schema:pagination 155
    81 schema:productId N17a498f9888a404e990a6e871f12bf6b
    82 N450ea67b51914674a11d7e005144b34a
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129131212
    84 https://doi.org/10.1007/s12040-020-01417-w
    85 schema:sdDatePublished 2022-01-01T18:52
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N04b70b2a81a04deb93d5066779e2132e
    88 schema:url https://doi.org/10.1007/s12040-020-01417-w
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N04089c264f2841dfa21a8dba70250832 schema:issueNumber 1
    93 rdf:type schema:PublicationIssue
    94 N04b70b2a81a04deb93d5066779e2132e schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N17a498f9888a404e990a6e871f12bf6b schema:name dimensions_id
    97 schema:value pub.1129131212
    98 rdf:type schema:PropertyValue
    99 N2c0748ff6e734f02897f9a9a16b2e4ca schema:volumeNumber 129
    100 rdf:type schema:PublicationVolume
    101 N331488c164214905a5dd89e7f4d62ee4 rdf:first sg:person.012174001757.02
    102 rdf:rest N85ab754ec18b425599d259ce22b6fe90
    103 N450ea67b51914674a11d7e005144b34a schema:name doi
    104 schema:value 10.1007/s12040-020-01417-w
    105 rdf:type schema:PropertyValue
    106 N52cb08a2d4884864b2177e595244a271 rdf:first sg:person.07714073223.10
    107 rdf:rest rdf:nil
    108 N799def6d78ce49e2a8ab3bcbdbac3429 schema:affiliation grid-institutes:grid.466772.6
    109 schema:familyName Tidke
    110 schema:givenName Nivedita
    111 rdf:type schema:Person
    112 N85ab754ec18b425599d259ce22b6fe90 rdf:first N799def6d78ce49e2a8ab3bcbdbac3429
    113 rdf:rest Nf7eb7aa7372b42aba1943f8cd5050e62
    114 Na165fdd887654410be5098740e331577 rdf:first sg:person.014171723724.50
    115 rdf:rest N331488c164214905a5dd89e7f4d62ee4
    116 Nf7eb7aa7372b42aba1943f8cd5050e62 rdf:first sg:person.016114157161.68
    117 rdf:rest N52cb08a2d4884864b2177e595244a271
    118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Physical Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Astronomical and Space Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Earth Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Geology
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Physical Geography and Environmental Geoscience
    132 rdf:type schema:DefinedTerm
    133 sg:journal.1136531 schema:issn 0253-4126
    134 2347-4327
    135 schema:name Journal of Earth System Science
    136 schema:publisher Springer Nature
    137 rdf:type schema:Periodical
    138 sg:person.012174001757.02 schema:affiliation grid-institutes:grid.466772.6
    139 schema:familyName Malathi
    140 schema:givenName K
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012174001757.02
    142 rdf:type schema:Person
    143 sg:person.014171723724.50 schema:affiliation grid-institutes:None
    144 schema:familyName Chattopadhyay
    145 schema:givenName N
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50
    147 rdf:type schema:Person
    148 sg:person.016114157161.68 schema:affiliation grid-institutes:grid.466772.6
    149 schema:familyName Attri
    150 schema:givenName S D
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68
    152 rdf:type schema:Person
    153 sg:person.07714073223.10 schema:affiliation grid-institutes:grid.453080.a
    154 schema:familyName Ray
    155 schema:givenName Kamaljit
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714073223.10
    157 rdf:type schema:Person
    158 sg:pub.10.1038/nclimate2067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365474
    159 https://doi.org/10.1038/nclimate2067
    160 rdf:type schema:CreativeWork
    161 grid-institutes:None schema:alternateName Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
    162 schema:name Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
    163 rdf:type schema:Organization
    164 grid-institutes:grid.453080.a schema:alternateName Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India
    165 schema:name Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India
    166 rdf:type schema:Organization
    167 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 411 005, Pune, India
    168 India Meteorological Department, IMD, 110 003, New Delhi, India
    169 schema:name India Meteorological Department, 411 005, Pune, India
    170 India Meteorological Department, IMD, 110 003, New Delhi, India
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...