Monitoring agricultural drought using combined drought index in India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-07-09

AUTHORS

N Chattopadhyay, K Malathi, Nivedita Tidke, S D Attri, Kamaljit Ray

ABSTRACT

Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices. More... »

PAGES

155

References to SciGraph publications

  • 2013-12-20. Global warming and changes in drought in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w

    DOI

    http://dx.doi.org/10.1007/s12040-020-01417-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129131212


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chattopadhyay", 
            "givenName": "N", 
            "id": "sg:person.014171723724.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 411 005, Pune, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 411 005, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malathi", 
            "givenName": "K", 
            "id": "sg:person.012174001757.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012174001757.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, 411 005, Pune, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, 411 005, Pune, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tidke", 
            "givenName": "Nivedita", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "India Meteorological Department, IMD, 110 003, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.466772.6", 
              "name": [
                "India Meteorological Department, IMD, 110 003, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Attri", 
            "givenName": "S D", 
            "id": "sg:person.016114157161.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.453080.a", 
              "name": [
                "Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ray", 
            "givenName": "Kamaljit", 
            "id": "sg:person.07714073223.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714073223.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate2067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027365474", 
              "https://doi.org/10.1038/nclimate2067"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-09", 
        "datePublishedReg": "2020-07-09", 
        "description": "Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12040-020-01417-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136531", 
            "issn": [
              "2347-4327", 
              "0253-4126"
            ], 
            "name": "Journal of Earth System Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "keywords": [
          "Combined Drought Index", 
          "agricultural drought", 
          "drought indices", 
          "drought-like situations", 
          "remote sensing observations", 
          "remote sensing", 
          "geospatial technologies", 
          "drought conditions", 
          "drought situation", 
          "sensing observations", 
          "drought", 
          "consecutive years", 
          "monsoon season", 
          "southwest monsoon season", 
          "synoptic overview", 
          "number of indices", 
          "kharif crops", 
          "individual indices", 
          "land", 
          "classification scheme", 
          "India", 
          "crops", 
          "season", 
          "index", 
          "district level", 
          "exploitation", 
          "new data", 
          "sensing", 
          "monitoring", 
          "metrics", 
          "efforts", 
          "colonial period", 
          "period data", 
          "data", 
          "study", 
          "present study", 
          "years", 
          "period", 
          "conditions", 
          "number", 
          "information", 
          "situation", 
          "efficient way", 
          "state", 
          "evolution", 
          "levels", 
          "observations", 
          "methodology", 
          "overview", 
          "space", 
          "time", 
          "way", 
          "experts", 
          "long-period data", 
          "good judgment", 
          "technology", 
          "scheme", 
          "strength", 
          "judgments", 
          "onset"
        ], 
        "name": "Monitoring agricultural drought using combined drought index in India", 
        "pagination": "155", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129131212"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12040-020-01417-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12040-020-01417-w", 
          "https://app.dimensions.ai/details/publication/pub.1129131212"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_861.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12040-020-01417-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-020-01417-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      22 PREDICATES      89 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12040-020-01417-w schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 anzsrc-for:04
    4 anzsrc-for:0403
    5 anzsrc-for:0406
    6 schema:author N261bff50c70145b5aa0a800a94faf632
    7 schema:citation sg:pub.10.1038/nclimate2067
    8 schema:datePublished 2020-07-09
    9 schema:datePublishedReg 2020-07-09
    10 schema:description Long period data and information indicate that India faced number of droughts-like situation from colonial period. A number of indices have been developed nationally and internationally to monitor agricultural drought based on remote sensing; however, to predict the onset of agricultural drought and its evolution and monitoring in time and space in a more efficient way qualitatively, Combined Drought Index (CDI) has been developed using meteorological, land based and remote sensing observations. In this study, an effort has been made to monitor agricultural drought based on exploitation of new data, methodologies and metrics that would aid the experts to make best judgments of regional-scale drought conditions through CDI using geospatial technology. The present study has been carried out for three consecutive years of 2014, 2015 and 2016 in five states (Andhra Pradesh, Chhattisgarh, Haryana, Maharashtra and Telangana) in India at district level for southwest monsoon season when rainfed kharif crops are grown extensively across the above-mentioned states in India. CDI gives a synthetic and synoptic overview of the drought situations using a classification scheme derived from various individual indices as it has been developed to combine the strength of various indices.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N3dd1fe5388e84f298d7a7c07b68636e2
    15 Ne0512bc67ebf4ed4b1a445d1972ce05c
    16 sg:journal.1136531
    17 schema:keywords Combined Drought Index
    18 India
    19 agricultural drought
    20 classification scheme
    21 colonial period
    22 conditions
    23 consecutive years
    24 crops
    25 data
    26 district level
    27 drought
    28 drought conditions
    29 drought indices
    30 drought situation
    31 drought-like situations
    32 efficient way
    33 efforts
    34 evolution
    35 experts
    36 exploitation
    37 geospatial technologies
    38 good judgment
    39 index
    40 individual indices
    41 information
    42 judgments
    43 kharif crops
    44 land
    45 levels
    46 long-period data
    47 methodology
    48 metrics
    49 monitoring
    50 monsoon season
    51 new data
    52 number
    53 number of indices
    54 observations
    55 onset
    56 overview
    57 period
    58 period data
    59 present study
    60 remote sensing
    61 remote sensing observations
    62 scheme
    63 season
    64 sensing
    65 sensing observations
    66 situation
    67 southwest monsoon season
    68 space
    69 state
    70 strength
    71 study
    72 synoptic overview
    73 technology
    74 time
    75 way
    76 years
    77 schema:name Monitoring agricultural drought using combined drought index in India
    78 schema:pagination 155
    79 schema:productId N6efcf1059b7048e49ba8f88270a2cd5a
    80 Ncbe132619e03497786963d0f1f6b811b
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129131212
    82 https://doi.org/10.1007/s12040-020-01417-w
    83 schema:sdDatePublished 2022-05-10T10:27
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N208d9b3a742d4b3199947aeb7cddf8c6
    86 schema:url https://doi.org/10.1007/s12040-020-01417-w
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N208d9b3a742d4b3199947aeb7cddf8c6 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N261bff50c70145b5aa0a800a94faf632 rdf:first sg:person.014171723724.50
    93 rdf:rest Naaecd545754e49c4afe23fd76ae33431
    94 N38cb7ec2d669456292c9144153d6ba85 rdf:first sg:person.07714073223.10
    95 rdf:rest rdf:nil
    96 N3dd1fe5388e84f298d7a7c07b68636e2 schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 N6efcf1059b7048e49ba8f88270a2cd5a schema:name dimensions_id
    99 schema:value pub.1129131212
    100 rdf:type schema:PropertyValue
    101 N7dd7550ee6274ebfba3b7cec13f2e72e rdf:first sg:person.016114157161.68
    102 rdf:rest N38cb7ec2d669456292c9144153d6ba85
    103 Naaecd545754e49c4afe23fd76ae33431 rdf:first sg:person.012174001757.02
    104 rdf:rest Nfa952c8047a5420d8c120f974a8f4f96
    105 Nc878cea2ba764348be3cd9349854025c schema:affiliation grid-institutes:grid.466772.6
    106 schema:familyName Tidke
    107 schema:givenName Nivedita
    108 rdf:type schema:Person
    109 Ncbe132619e03497786963d0f1f6b811b schema:name doi
    110 schema:value 10.1007/s12040-020-01417-w
    111 rdf:type schema:PropertyValue
    112 Ne0512bc67ebf4ed4b1a445d1972ce05c schema:volumeNumber 129
    113 rdf:type schema:PublicationVolume
    114 Nfa952c8047a5420d8c120f974a8f4f96 rdf:first Nc878cea2ba764348be3cd9349854025c
    115 rdf:rest N7dd7550ee6274ebfba3b7cec13f2e72e
    116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Physical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Astronomical and Space Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Earth Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Geology
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Geography and Environmental Geoscience
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1136531 schema:issn 0253-4126
    132 2347-4327
    133 schema:name Journal of Earth System Science
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.012174001757.02 schema:affiliation grid-institutes:grid.466772.6
    137 schema:familyName Malathi
    138 schema:givenName K
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012174001757.02
    140 rdf:type schema:Person
    141 sg:person.014171723724.50 schema:affiliation grid-institutes:None
    142 schema:familyName Chattopadhyay
    143 schema:givenName N
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50
    145 rdf:type schema:Person
    146 sg:person.016114157161.68 schema:affiliation grid-institutes:grid.466772.6
    147 schema:familyName Attri
    148 schema:givenName S D
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114157161.68
    150 rdf:type schema:Person
    151 sg:person.07714073223.10 schema:affiliation grid-institutes:grid.453080.a
    152 schema:familyName Ray
    153 schema:givenName Kamaljit
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714073223.10
    155 rdf:type schema:Person
    156 sg:pub.10.1038/nclimate2067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027365474
    157 https://doi.org/10.1038/nclimate2067
    158 rdf:type schema:CreativeWork
    159 grid-institutes:None schema:alternateName Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
    160 schema:name Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
    161 rdf:type schema:Organization
    162 grid-institutes:grid.453080.a schema:alternateName Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India
    163 schema:name Ministry of Earth Sciences (MoES), Lodhi Road, 110 003, New Delhi, India
    164 rdf:type schema:Organization
    165 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 411 005, Pune, India
    166 India Meteorological Department, IMD, 110 003, New Delhi, India
    167 schema:name India Meteorological Department, 411 005, Pune, India
    168 India Meteorological Department, IMD, 110 003, New Delhi, India
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...