Ontology type: schema:ScholarlyArticle Open Access: True
2019-05-13
AUTHORSAshok Kumar, Ch Sridevi, V R Durai, K K Singh, P Mukhopadhyay, N Chattopadhyay
ABSTRACTIn the present study, a model output statistics (MOS) guidance model was developed by using the neural network technique for a bias-corrected rainfall forecast. The model was developed over the Indian window (0–40∘N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40{^{\circ }}\hbox {N}$$\end{document} and 60–100∘E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100{^{\circ }}\hbox {E}$$\end{document}) by using the observed and global forecast system (GFS) T-1534 model output (up to 5 days) at a 0.125∘×0.125∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.125{^{\circ }} \times \,0.125{^{\circ }}$$\end{document} regular grid during the summer monsoon (June–September) 2016. The skill of the developed MOS model forecast against the observed 0.125∘×0.125∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.125{^{\circ }} \times 0.125{^{\circ }}$$\end{document} grid rainfall data is obtained for the summer monsoon (June–September) 2017. The skill of the MOS model rainfall forecast is found to show good improvement over the T-1534 model’s direct forecast over the Indian window. In general, the T-1534 model’s direct forecast shows high skill but the forecast obtained by using the MOS model shows better skill than the direct model’s forecast, although a major improvement is seen for the Day 1 forecast at the national level. So the skill of the bias-corrected rainfall forecast by using the MOS guidance and the T-1534 model output is high and has the potential of being used as an operational forecast over the Indian region. More... »
PAGES130
http://scigraph.springernature.com/pub.10.1007/s12040-019-1149-y
DOIhttp://dx.doi.org/10.1007/s12040-019-1149-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1114222015
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "India Meteorological Department, 110 003, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.466772.6",
"name": [
"India Meteorological Department, 110 003, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Ashok",
"id": "sg:person.015665027055.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015665027055.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "India Meteorological Department, 110 003, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.466772.6",
"name": [
"India Meteorological Department, 110 003, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Sridevi",
"givenName": "Ch",
"id": "sg:person.012733721336.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733721336.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "India Meteorological Department, 110 003, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.466772.6",
"name": [
"India Meteorological Department, 110 003, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Durai",
"givenName": "V R",
"id": "sg:person.015364606563.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364606563.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "India Meteorological Department, 110 003, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.466772.6",
"name": [
"India Meteorological Department, 110 003, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Singh",
"givenName": "K K",
"id": "sg:person.011166642362.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166642362.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "India Institute of Tropical Meteorology, 411 017, Pune, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"India Institute of Tropical Meteorology, 411 017, Pune, India"
],
"type": "Organization"
},
"familyName": "Mukhopadhyay",
"givenName": "P",
"id": "sg:person.07665477062.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665477062.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "India Meteorological Department, 411 005, Pune, India",
"id": "http://www.grid.ac/institutes/grid.466772.6",
"name": [
"India Meteorological Department, 411 005, Pune, India"
],
"type": "Organization"
},
"familyName": "Chattopadhyay",
"givenName": "N",
"id": "sg:person.014171723724.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00382-013-1895-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027568127",
"https://doi.org/10.1007/s00382-013-1895-5"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-05-13",
"datePublishedReg": "2019-05-13",
"description": "In the present study, a model output statistics (MOS) guidance model was developed by using the neural network technique for a bias-corrected rainfall forecast. The model was developed over the Indian window (0\u201340\u2218N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$40{^{\\circ }}\\hbox {N}$$\\end{document} and 60\u2013100\u2218E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$100{^{\\circ }}\\hbox {E}$$\\end{document}) by using the observed and global forecast system (GFS) T-1534 model output (up to 5\u00a0days) at a 0.125\u2218\u00d70.125\u2218\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0.125{^{\\circ }} \\times \\,0.125{^{\\circ }}$$\\end{document} regular grid during the summer monsoon (June\u2013September) 2016. The skill of the developed MOS model forecast against the observed 0.125\u2218\u00d70.125\u2218\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0.125{^{\\circ }} \\times 0.125{^{\\circ }}$$\\end{document} grid rainfall data is obtained for the summer monsoon (June\u2013September) 2017. The skill of the MOS model rainfall forecast is found to show good improvement over the T-1534 model\u2019s direct forecast over the Indian window. In general, the T-1534 model\u2019s direct forecast shows high skill but the forecast obtained by using the MOS model shows better skill than the direct model\u2019s forecast, although a major improvement is seen for the Day 1 forecast at the national level. So the skill of the bias-corrected rainfall forecast by using the MOS guidance and the T-1534 model output is high and has the potential of being used as an operational forecast over the Indian region.",
"genre": "article",
"id": "sg:pub.10.1007/s12040-019-1149-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136531",
"issn": [
"2347-4327",
"0253-4126"
],
"name": "Journal of Earth System Science",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "128"
}
],
"keywords": [
"rainfall forecasts",
"model forecasts",
"MOS guidance",
"model output",
"direct forecasts",
"model rainfall forecast",
"day 1 forecast",
"rainfall data",
"operational forecasts",
"Indian region",
"better skills",
"high skill",
"forecasts",
"rainfall",
"regular grid",
"neural network technique",
"major improvements",
"India",
"model",
"region",
"network techniques",
"window",
"data",
"output",
"MOS model",
"grid",
"guidance model",
"skills",
"potential",
"study",
"present study",
"levels",
"network",
"technique",
"neural network",
"improvement",
"national level",
"guidance",
"better improvement",
"system T"
],
"name": "MOS guidance using a neural network for the rainfall forecast over India",
"pagination": "130",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1114222015"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12040-019-1149-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12040-019-1149-y",
"https://app.dimensions.ai/details/publication/pub.1114222015"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_832.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12040-019-1149-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1149-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1149-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1149-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1149-y'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
22 PREDICATES
69 URIs
57 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12040-019-1149-y | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | ″ | anzsrc-for:04 |
4 | ″ | ″ | anzsrc-for:0403 |
5 | ″ | ″ | anzsrc-for:0406 |
6 | ″ | schema:author | Na30b7bddc2a847e9b738f060bc1d4bda |
7 | ″ | schema:citation | sg:pub.10.1007/s00382-013-1895-5 |
8 | ″ | schema:datePublished | 2019-05-13 |
9 | ″ | schema:datePublishedReg | 2019-05-13 |
10 | ″ | schema:description | In the present study, a model output statistics (MOS) guidance model was developed by using the neural network technique for a bias-corrected rainfall forecast. The model was developed over the Indian window (0–40∘N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40{^{\circ }}\hbox {N}$$\end{document} and 60–100∘E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100{^{\circ }}\hbox {E}$$\end{document}) by using the observed and global forecast system (GFS) T-1534 model output (up to 5 days) at a 0.125∘×0.125∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.125{^{\circ }} \times \,0.125{^{\circ }}$$\end{document} regular grid during the summer monsoon (June–September) 2016. The skill of the developed MOS model forecast against the observed 0.125∘×0.125∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.125{^{\circ }} \times 0.125{^{\circ }}$$\end{document} grid rainfall data is obtained for the summer monsoon (June–September) 2017. The skill of the MOS model rainfall forecast is found to show good improvement over the T-1534 model’s direct forecast over the Indian window. In general, the T-1534 model’s direct forecast shows high skill but the forecast obtained by using the MOS model shows better skill than the direct model’s forecast, although a major improvement is seen for the Day 1 forecast at the national level. So the skill of the bias-corrected rainfall forecast by using the MOS guidance and the T-1534 model output is high and has the potential of being used as an operational forecast over the Indian region. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | true |
14 | ″ | schema:isPartOf | Nc21550a2b0c646bd8b80f7bbf7fc389f |
15 | ″ | ″ | Nef92f72135ae41098063db585bb98dee |
16 | ″ | ″ | sg:journal.1136531 |
17 | ″ | schema:keywords | India |
18 | ″ | ″ | Indian region |
19 | ″ | ″ | MOS guidance |
20 | ″ | ″ | MOS model |
21 | ″ | ″ | better improvement |
22 | ″ | ″ | better skills |
23 | ″ | ″ | data |
24 | ″ | ″ | day 1 forecast |
25 | ″ | ″ | direct forecasts |
26 | ″ | ″ | forecasts |
27 | ″ | ″ | grid |
28 | ″ | ″ | guidance |
29 | ″ | ″ | guidance model |
30 | ″ | ″ | high skill |
31 | ″ | ″ | improvement |
32 | ″ | ″ | levels |
33 | ″ | ″ | major improvements |
34 | ″ | ″ | model |
35 | ″ | ″ | model forecasts |
36 | ″ | ″ | model output |
37 | ″ | ″ | model rainfall forecast |
38 | ″ | ″ | national level |
39 | ″ | ″ | network |
40 | ″ | ″ | network techniques |
41 | ″ | ″ | neural network |
42 | ″ | ″ | neural network technique |
43 | ″ | ″ | operational forecasts |
44 | ″ | ″ | output |
45 | ″ | ″ | potential |
46 | ″ | ″ | present study |
47 | ″ | ″ | rainfall |
48 | ″ | ″ | rainfall data |
49 | ″ | ″ | rainfall forecasts |
50 | ″ | ″ | region |
51 | ″ | ″ | regular grid |
52 | ″ | ″ | skills |
53 | ″ | ″ | study |
54 | ″ | ″ | system T |
55 | ″ | ″ | technique |
56 | ″ | ″ | window |
57 | ″ | schema:name | MOS guidance using a neural network for the rainfall forecast over India |
58 | ″ | schema:pagination | 130 |
59 | ″ | schema:productId | N0d947793aaf44c8789b11d9d9475b1b8 |
60 | ″ | ″ | Na4b57a83e9f647bfa1969545b31b55cb |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1114222015 |
62 | ″ | ″ | https://doi.org/10.1007/s12040-019-1149-y |
63 | ″ | schema:sdDatePublished | 2022-05-10T10:25 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N508c316fd14b43b3be42738c422b4cd0 |
66 | ″ | schema:url | https://doi.org/10.1007/s12040-019-1149-y |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | articles |
69 | ″ | rdf:type | schema:ScholarlyArticle |
70 | N0d947793aaf44c8789b11d9d9475b1b8 | schema:name | dimensions_id |
71 | ″ | schema:value | pub.1114222015 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | N1fa542be949b4788b645a593ef657114 | rdf:first | sg:person.014171723724.50 |
74 | ″ | rdf:rest | rdf:nil |
75 | N508c316fd14b43b3be42738c422b4cd0 | schema:name | Springer Nature - SN SciGraph project |
76 | ″ | rdf:type | schema:Organization |
77 | Na30b7bddc2a847e9b738f060bc1d4bda | rdf:first | sg:person.015665027055.25 |
78 | ″ | rdf:rest | Nbfcb163ade754e53b284da641bd8260e |
79 | Na4b57a83e9f647bfa1969545b31b55cb | schema:name | doi |
80 | ″ | schema:value | 10.1007/s12040-019-1149-y |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Nb44a83dd89ff4d64a33d50aed120a50a | rdf:first | sg:person.011166642362.25 |
83 | ″ | rdf:rest | Nc4808c061d824c148445818e263f0f20 |
84 | Nbfcb163ade754e53b284da641bd8260e | rdf:first | sg:person.012733721336.83 |
85 | ″ | rdf:rest | Nc95233c7507d4dcbace9147752693a92 |
86 | Nc21550a2b0c646bd8b80f7bbf7fc389f | schema:volumeNumber | 128 |
87 | ″ | rdf:type | schema:PublicationVolume |
88 | Nc4808c061d824c148445818e263f0f20 | rdf:first | sg:person.07665477062.28 |
89 | ″ | rdf:rest | N1fa542be949b4788b645a593ef657114 |
90 | Nc95233c7507d4dcbace9147752693a92 | rdf:first | sg:person.015364606563.26 |
91 | ″ | rdf:rest | Nb44a83dd89ff4d64a33d50aed120a50a |
92 | Nef92f72135ae41098063db585bb98dee | schema:issueNumber | 5 |
93 | ″ | rdf:type | schema:PublicationIssue |
94 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Physical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Astronomical and Space Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Earth Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0403 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Geology |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Physical Geography and Environmental Geoscience |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:journal.1136531 | schema:issn | 0253-4126 |
110 | ″ | ″ | 2347-4327 |
111 | ″ | schema:name | Journal of Earth System Science |
112 | ″ | schema:publisher | Springer Nature |
113 | ″ | rdf:type | schema:Periodical |
114 | sg:person.011166642362.25 | schema:affiliation | grid-institutes:grid.466772.6 |
115 | ″ | schema:familyName | Singh |
116 | ″ | schema:givenName | K K |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166642362.25 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.012733721336.83 | schema:affiliation | grid-institutes:grid.466772.6 |
120 | ″ | schema:familyName | Sridevi |
121 | ″ | schema:givenName | Ch |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733721336.83 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.014171723724.50 | schema:affiliation | grid-institutes:grid.466772.6 |
125 | ″ | schema:familyName | Chattopadhyay |
126 | ″ | schema:givenName | N |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171723724.50 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.015364606563.26 | schema:affiliation | grid-institutes:grid.466772.6 |
130 | ″ | schema:familyName | Durai |
131 | ″ | schema:givenName | V R |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364606563.26 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.015665027055.25 | schema:affiliation | grid-institutes:grid.466772.6 |
135 | ″ | schema:familyName | Kumar |
136 | ″ | schema:givenName | Ashok |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015665027055.25 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.07665477062.28 | schema:affiliation | grid-institutes:None |
140 | ″ | schema:familyName | Mukhopadhyay |
141 | ″ | schema:givenName | P |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665477062.28 |
143 | ″ | rdf:type | schema:Person |
144 | sg:pub.10.1007/s00382-013-1895-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027568127 |
145 | ″ | ″ | https://doi.org/10.1007/s00382-013-1895-5 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | grid-institutes:None | schema:alternateName | India Institute of Tropical Meteorology, 411 017, Pune, India |
148 | ″ | schema:name | India Institute of Tropical Meteorology, 411 017, Pune, India |
149 | ″ | rdf:type | schema:Organization |
150 | grid-institutes:grid.466772.6 | schema:alternateName | India Meteorological Department, 110 003, New Delhi, India |
151 | ″ | ″ | India Meteorological Department, 411 005, Pune, India |
152 | ″ | schema:name | India Meteorological Department, 110 003, New Delhi, India |
153 | ″ | ″ | India Meteorological Department, 411 005, Pune, India |
154 | ″ | rdf:type | schema:Organization |