Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-25

AUTHORS

N Kishore, A K Srivastava, Hemwati Nandan, Chhavi P Pandey, S Agrawal, N Singh, V K Soni, D S Bisht, S Tiwari, Manoj K Srivastava

ABSTRACT

Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005–2012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2})$$\end{document}, sulphur dioxide (SO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2})$$\end{document}, particulate matter less than 10μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu \hbox {m}$$\end{document} (PM10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10})$$\end{document} and suspended particulate matter (SPM) were found to be 62.0±27.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.0\,{\pm }\,27.6$$\end{document}, 12.5±8.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12.5\,{\pm }\,8.2$$\end{document}, 253.7±134\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$253.7\,{\pm }\,134$$\end{document} and 529.2±213.1μg/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$529.2\,{\pm }\,213.1\,\upmu \hbox {g}/\hbox {m}^{3}$$\end{document}, respectively. The 24-hr mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM were exceeded on ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM showed an increasing trend while SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north–northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster. More... »

PAGES

55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4

DOI

http://dx.doi.org/10.1007/s12040-019-1070-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112387119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Gurukula Kangri University, Haridwar, India", 
          "id": "http://www.grid.ac/institutes/grid.411895.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
            "Department of Physics, Gurukula Kangri University, Haridwar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishore", 
        "givenName": "N", 
        "id": "sg:person.014311255640.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311255640.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastava", 
        "givenName": "A K", 
        "id": "sg:person.0602123407.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Gurukula Kangri University, Haridwar, India", 
          "id": "http://www.grid.ac/institutes/grid.411895.0", 
          "name": [
            "Department of Physics, Gurukula Kangri University, Haridwar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandan", 
        "givenName": "Hemwati", 
        "id": "sg:person.013036110713.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013036110713.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wadia Institute of Himalaya Geology, Dehradun, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Wadia Institute of Himalaya Geology, Dehradun, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Chhavi P", 
        "id": "sg:person.010306760135.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306760135.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Pollution Control Board, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.464771.7", 
          "name": [
            "Central Pollution Control Board, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "S", 
        "id": "sg:person.013306242572.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306242572.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India", 
          "id": "http://www.grid.ac/institutes/grid.440527.0", 
          "name": [
            "Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "N", 
        "id": "sg:person.0635256750.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635256750.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, Lodhi Road, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, Lodhi Road, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soni", 
        "givenName": "V K", 
        "id": "sg:person.01244434450.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisht", 
        "givenName": "D S", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiwari", 
        "givenName": "S", 
        "id": "sg:person.01257207416.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geophysics, Banaras Hindu University, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Geophysics, Banaras Hindu University, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastava", 
        "givenName": "Manoj K", 
        "id": "sg:person.0625551746.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625551746.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10874-014-9295-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007207527", 
          "https://doi.org/10.1007/s10874-014-9295-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35082634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042344321", 
          "https://doi.org/10.1038/35082634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-011-0633-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032916056", 
          "https://doi.org/10.1007/s11356-011-0633-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-2768-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014862274", 
          "https://doi.org/10.1007/s11356-014-2768-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-011-9931-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021260855", 
          "https://doi.org/10.1007/s11069-011-9931-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-005-9043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026803105", 
          "https://doi.org/10.1007/s10661-005-9043-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-25", 
    "datePublishedReg": "2019-02-25", 
    "description": "Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005\u20132012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2})$$\\end{document}, sulphur dioxide (SO2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2})$$\\end{document}, particulate matter less than 10\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$10\\,\\upmu \\hbox {m}$$\\end{document} (PM10)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10})$$\\end{document} and suspended particulate matter (SPM) were found to be 62.0\u00b127.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$62.0\\,{\\pm }\\,27.6$$\\end{document}, 12.5\u00b18.2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$12.5\\,{\\pm }\\,8.2$$\\end{document}, 253.7\u00b1134\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$253.7\\,{\\pm }\\,134$$\\end{document} and 529.2\u00b1213.1\u03bcg/m3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$529.2\\,{\\pm }\\,213.1\\,\\upmu \\hbox {g}/\\hbox {m}^{3}$$\\end{document}, respectively. The 24-hr mean mass concentrations of NO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2}$$\\end{document}, PM10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10}$$\\end{document} and SPM were exceeded on \u223c\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim $$\\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2}$$\\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2}$$\\end{document}, PM10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10}$$\\end{document} and SPM showed an increasing trend while SO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2}$$\\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north\u2013northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12040-019-1070-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136531", 
        "issn": [
          "2347-4327", 
          "0253-4126"
        ], 
        "name": "Journal of Earth System Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "keywords": [
      "air pollutants", 
      "days", 
      "New Delhi", 
      "concentration", 
      "measurement days", 
      "human health", 
      "nitrogen dioxide", 
      "health", 
      "urban locations", 
      "mean mass concentration", 
      "particulate matter", 
      "National Ambient Air Quality Standard level", 
      "standard level", 
      "levels", 
      "Delhi", 
      "reduction", 
      "use", 
      "concern", 
      "measurements", 
      "scale", 
      "mass concentration", 
      "sulfur dioxide", 
      "SPM", 
      "trends", 
      "cluster analysis", 
      "analysis", 
      "long-term measurements", 
      "near-surface air pollutants", 
      "annual mean mass concentrations", 
      "matter", 
      "air mass cluster analysis", 
      "trajectory clusters", 
      "location", 
      "Indo-Gangetic Basin", 
      "pollutants", 
      "urban stations", 
      "distribution", 
      "different temporal scales", 
      "post-monsoon season", 
      "high mass concentration", 
      "clusters", 
      "temporal scales", 
      "reduction of sulfur", 
      "clean fuel", 
      "season", 
      "dioxide", 
      "natural gas", 
      "climate", 
      "trajectories", 
      "basin", 
      "stations", 
      "sulfur", 
      "diesel", 
      "fuel", 
      "gas", 
      "LPG", 
      "Simultaneous long-term measurements", 
      "total available measurement days", 
      "available measurement days", 
      "respective National Ambient Air Quality Standard (NAAQS) level", 
      "Ambient Air Quality Standard (NAAQS) level", 
      "Air Quality Standard (NAAQS) level", 
      "Quality Standard (NAAQS) level", 
      "winter/post-monsoon seasons", 
      "mass cluster analysis", 
      "north\u2013northwest trajectories", 
      "southeast trajectory cluster"
    ], 
    "name": "Long-term (2005\u20132012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin", 
    "pagination": "55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112387119"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12040-019-1070-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12040-019-1070-4", 
      "https://app.dimensions.ai/details/publication/pub.1112387119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_829.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12040-019-1070-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      22 PREDICATES      101 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12040-019-1070-4 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:04
4 anzsrc-for:0403
5 anzsrc-for:0406
6 schema:author N57351f0a62dd42828e843962f3d5f663
7 schema:citation sg:pub.10.1007/s10661-005-9043-2
8 sg:pub.10.1007/s10874-014-9295-8
9 sg:pub.10.1007/s11069-011-9931-4
10 sg:pub.10.1007/s11356-011-0633-y
11 sg:pub.10.1007/s11356-014-2768-0
12 sg:pub.10.1038/35082634
13 schema:datePublished 2019-02-25
14 schema:datePublishedReg 2019-02-25
15 schema:description Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005–2012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2})$$\end{document}, sulphur dioxide (SO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2})$$\end{document}, particulate matter less than 10μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu \hbox {m}$$\end{document} (PM10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10})$$\end{document} and suspended particulate matter (SPM) were found to be 62.0±27.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.0\,{\pm }\,27.6$$\end{document}, 12.5±8.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12.5\,{\pm }\,8.2$$\end{document}, 253.7±134\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$253.7\,{\pm }\,134$$\end{document} and 529.2±213.1μg/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$529.2\,{\pm }\,213.1\,\upmu \hbox {g}/\hbox {m}^{3}$$\end{document}, respectively. The 24-hr mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM were exceeded on ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM showed an increasing trend while SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north–northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N4451aa527aaa4056bb1b412584ebbdd0
20 Na146993ff4114661a64d0edea7861b71
21 sg:journal.1136531
22 schema:keywords Air Quality Standard (NAAQS) level
23 Ambient Air Quality Standard (NAAQS) level
24 Delhi
25 Indo-Gangetic Basin
26 LPG
27 National Ambient Air Quality Standard level
28 New Delhi
29 Quality Standard (NAAQS) level
30 SPM
31 Simultaneous long-term measurements
32 air mass cluster analysis
33 air pollutants
34 analysis
35 annual mean mass concentrations
36 available measurement days
37 basin
38 clean fuel
39 climate
40 cluster analysis
41 clusters
42 concentration
43 concern
44 days
45 diesel
46 different temporal scales
47 dioxide
48 distribution
49 fuel
50 gas
51 health
52 high mass concentration
53 human health
54 levels
55 location
56 long-term measurements
57 mass cluster analysis
58 mass concentration
59 matter
60 mean mass concentration
61 measurement days
62 measurements
63 natural gas
64 near-surface air pollutants
65 nitrogen dioxide
66 north–northwest trajectories
67 particulate matter
68 pollutants
69 post-monsoon season
70 reduction
71 reduction of sulfur
72 respective National Ambient Air Quality Standard (NAAQS) level
73 scale
74 season
75 southeast trajectory cluster
76 standard level
77 stations
78 sulfur
79 sulfur dioxide
80 temporal scales
81 total available measurement days
82 trajectories
83 trajectory clusters
84 trends
85 urban locations
86 urban stations
87 use
88 winter/post-monsoon seasons
89 schema:name Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin
90 schema:pagination 55
91 schema:productId N5e2748929d244af49691edb3495e82b9
92 Naa87e0a812764d5fab8d7d8c49c77578
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112387119
94 https://doi.org/10.1007/s12040-019-1070-4
95 schema:sdDatePublished 2021-12-01T19:45
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N885a3838f6894d0c9e0971c566cf97a6
98 schema:url https://doi.org/10.1007/s12040-019-1070-4
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0b93569014c1476bbd3c202f63acdd1d rdf:first sg:person.01257207416.35
103 rdf:rest Nec5a8085ec6d416997aa6f27c09f1c05
104 N3cd235130f694d58a723664e3719aaf3 rdf:first sg:person.013306242572.84
105 rdf:rest Nd4f7a7b391554942a4cb25f54b2bb08e
106 N4451aa527aaa4056bb1b412584ebbdd0 schema:issueNumber 3
107 rdf:type schema:PublicationIssue
108 N4568b301efb04ed4ac733bc54f18039f rdf:first sg:person.01244434450.01
109 rdf:rest N54eb501ae56b43e3b2135d3a270923c9
110 N4a46aa79920b46098973fc5ff2324aef rdf:first sg:person.013036110713.52
111 rdf:rest Ne66d409da96f43d190f8d064d56b03ac
112 N54eb501ae56b43e3b2135d3a270923c9 rdf:first N65d306f4fbaa4c318900d366bb79ef15
113 rdf:rest N0b93569014c1476bbd3c202f63acdd1d
114 N57351f0a62dd42828e843962f3d5f663 rdf:first sg:person.014311255640.37
115 rdf:rest N5d63b0c2a56d4ff6873006b6059f0b21
116 N5d63b0c2a56d4ff6873006b6059f0b21 rdf:first sg:person.0602123407.10
117 rdf:rest N4a46aa79920b46098973fc5ff2324aef
118 N5e2748929d244af49691edb3495e82b9 schema:name doi
119 schema:value 10.1007/s12040-019-1070-4
120 rdf:type schema:PropertyValue
121 N65d306f4fbaa4c318900d366bb79ef15 schema:affiliation grid-institutes:grid.417983.0
122 schema:familyName Bisht
123 schema:givenName D S
124 rdf:type schema:Person
125 N885a3838f6894d0c9e0971c566cf97a6 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Na146993ff4114661a64d0edea7861b71 schema:volumeNumber 128
128 rdf:type schema:PublicationVolume
129 Naa87e0a812764d5fab8d7d8c49c77578 schema:name dimensions_id
130 schema:value pub.1112387119
131 rdf:type schema:PropertyValue
132 Nd4f7a7b391554942a4cb25f54b2bb08e rdf:first sg:person.0635256750.16
133 rdf:rest N4568b301efb04ed4ac733bc54f18039f
134 Ne66d409da96f43d190f8d064d56b03ac rdf:first sg:person.010306760135.44
135 rdf:rest N3cd235130f694d58a723664e3719aaf3
136 Nec5a8085ec6d416997aa6f27c09f1c05 rdf:first sg:person.0625551746.30
137 rdf:rest rdf:nil
138 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
139 schema:name Physical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
142 schema:name Astronomical and Space Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
145 schema:name Earth Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
148 schema:name Geology
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
151 schema:name Physical Geography and Environmental Geoscience
152 rdf:type schema:DefinedTerm
153 sg:journal.1136531 schema:issn 0253-4126
154 2347-4327
155 schema:name Journal of Earth System Science
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.010306760135.44 schema:affiliation grid-institutes:None
159 schema:familyName Pandey
160 schema:givenName Chhavi P
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306760135.44
162 rdf:type schema:Person
163 sg:person.01244434450.01 schema:affiliation grid-institutes:grid.466772.6
164 schema:familyName Soni
165 schema:givenName V K
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01
167 rdf:type schema:Person
168 sg:person.01257207416.35 schema:affiliation grid-institutes:grid.417983.0
169 schema:familyName Tiwari
170 schema:givenName S
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35
172 rdf:type schema:Person
173 sg:person.013036110713.52 schema:affiliation grid-institutes:grid.411895.0
174 schema:familyName Nandan
175 schema:givenName Hemwati
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013036110713.52
177 rdf:type schema:Person
178 sg:person.013306242572.84 schema:affiliation grid-institutes:grid.464771.7
179 schema:familyName Agrawal
180 schema:givenName S
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306242572.84
182 rdf:type schema:Person
183 sg:person.014311255640.37 schema:affiliation grid-institutes:grid.411895.0
184 schema:familyName Kishore
185 schema:givenName N
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311255640.37
187 rdf:type schema:Person
188 sg:person.0602123407.10 schema:affiliation grid-institutes:grid.417983.0
189 schema:familyName Srivastava
190 schema:givenName A K
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10
192 rdf:type schema:Person
193 sg:person.0625551746.30 schema:affiliation grid-institutes:grid.411507.6
194 schema:familyName Srivastava
195 schema:givenName Manoj K
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625551746.30
197 rdf:type schema:Person
198 sg:person.0635256750.16 schema:affiliation grid-institutes:grid.440527.0
199 schema:familyName Singh
200 schema:givenName N
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635256750.16
202 rdf:type schema:Person
203 sg:pub.10.1007/s10661-005-9043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026803105
204 https://doi.org/10.1007/s10661-005-9043-2
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s10874-014-9295-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007207527
207 https://doi.org/10.1007/s10874-014-9295-8
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s11069-011-9931-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021260855
210 https://doi.org/10.1007/s11069-011-9931-4
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11356-011-0633-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032916056
213 https://doi.org/10.1007/s11356-011-0633-y
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s11356-014-2768-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014862274
216 https://doi.org/10.1007/s11356-014-2768-0
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/35082634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042344321
219 https://doi.org/10.1038/35082634
220 rdf:type schema:CreativeWork
221 grid-institutes:None schema:alternateName Wadia Institute of Himalaya Geology, Dehradun, India
222 schema:name Wadia Institute of Himalaya Geology, Dehradun, India
223 rdf:type schema:Organization
224 grid-institutes:grid.411507.6 schema:alternateName Department of Geophysics, Banaras Hindu University, Varanasi, India
225 schema:name Department of Geophysics, Banaras Hindu University, Varanasi, India
226 rdf:type schema:Organization
227 grid-institutes:grid.411895.0 schema:alternateName Department of Physics, Gurukula Kangri University, Haridwar, India
228 schema:name Department of Physics, Gurukula Kangri University, Haridwar, India
229 Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
230 rdf:type schema:Organization
231 grid-institutes:grid.417983.0 schema:alternateName Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
232 schema:name Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
233 rdf:type schema:Organization
234 grid-institutes:grid.440527.0 schema:alternateName Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India
235 schema:name Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India
236 rdf:type schema:Organization
237 grid-institutes:grid.464771.7 schema:alternateName Central Pollution Control Board, New Delhi, India
238 schema:name Central Pollution Control Board, New Delhi, India
239 rdf:type schema:Organization
240 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, Lodhi Road, New Delhi, India
241 schema:name India Meteorological Department, Lodhi Road, New Delhi, India
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...