Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-25

AUTHORS

N Kishore, A K Srivastava, Hemwati Nandan, Chhavi P Pandey, S Agrawal, N Singh, V K Soni, D S Bisht, S Tiwari, Manoj K Srivastava

ABSTRACT

Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005–2012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2})$$\end{document}, sulphur dioxide (SO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2})$$\end{document}, particulate matter less than 10μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu \hbox {m}$$\end{document} (PM10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10})$$\end{document} and suspended particulate matter (SPM) were found to be 62.0±27.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.0\,{\pm }\,27.6$$\end{document}, 12.5±8.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12.5\,{\pm }\,8.2$$\end{document}, 253.7±134\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$253.7\,{\pm }\,134$$\end{document} and 529.2±213.1μg/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$529.2\,{\pm }\,213.1\,\upmu \hbox {g}/\hbox {m}^{3}$$\end{document}, respectively. The 24-hr mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM were exceeded on ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM showed an increasing trend while SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north–northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster. More... »

PAGES

55

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4

DOI

http://dx.doi.org/10.1007/s12040-019-1070-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112387119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Gurukula Kangri University, Haridwar, India", 
          "id": "http://www.grid.ac/institutes/grid.411895.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
            "Department of Physics, Gurukula Kangri University, Haridwar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishore", 
        "givenName": "N", 
        "id": "sg:person.014311255640.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311255640.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastava", 
        "givenName": "A K", 
        "id": "sg:person.0602123407.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Gurukula Kangri University, Haridwar, India", 
          "id": "http://www.grid.ac/institutes/grid.411895.0", 
          "name": [
            "Department of Physics, Gurukula Kangri University, Haridwar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandan", 
        "givenName": "Hemwati", 
        "id": "sg:person.013036110713.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013036110713.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wadia Institute of Himalaya Geology, Dehradun, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Wadia Institute of Himalaya Geology, Dehradun, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandey", 
        "givenName": "Chhavi P", 
        "id": "sg:person.010306760135.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306760135.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Pollution Control Board, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.464771.7", 
          "name": [
            "Central Pollution Control Board, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "S", 
        "id": "sg:person.013306242572.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306242572.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India", 
          "id": "http://www.grid.ac/institutes/grid.440527.0", 
          "name": [
            "Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "N", 
        "id": "sg:person.0635256750.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635256750.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, Lodhi Road, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, Lodhi Road, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soni", 
        "givenName": "V K", 
        "id": "sg:person.01244434450.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisht", 
        "givenName": "D S", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiwari", 
        "givenName": "S", 
        "id": "sg:person.01257207416.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geophysics, Banaras Hindu University, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Department of Geophysics, Banaras Hindu University, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastava", 
        "givenName": "Manoj K", 
        "id": "sg:person.0625551746.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625551746.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11356-011-0633-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032916056", 
          "https://doi.org/10.1007/s11356-011-0633-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-011-9931-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021260855", 
          "https://doi.org/10.1007/s11069-011-9931-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10874-014-9295-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007207527", 
          "https://doi.org/10.1007/s10874-014-9295-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35082634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042344321", 
          "https://doi.org/10.1038/35082634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-2768-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014862274", 
          "https://doi.org/10.1007/s11356-014-2768-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-005-9043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026803105", 
          "https://doi.org/10.1007/s10661-005-9043-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-25", 
    "datePublishedReg": "2019-02-25", 
    "description": "Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005\u20132012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2})$$\\end{document}, sulphur dioxide (SO2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2})$$\\end{document}, particulate matter less than 10\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$10\\,\\upmu \\hbox {m}$$\\end{document} (PM10)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10})$$\\end{document} and suspended particulate matter (SPM) were found to be 62.0\u00b127.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$62.0\\,{\\pm }\\,27.6$$\\end{document}, 12.5\u00b18.2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$12.5\\,{\\pm }\\,8.2$$\\end{document}, 253.7\u00b1134\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$253.7\\,{\\pm }\\,134$$\\end{document} and 529.2\u00b1213.1\u03bcg/m3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$529.2\\,{\\pm }\\,213.1\\,\\upmu \\hbox {g}/\\hbox {m}^{3}$$\\end{document}, respectively. The 24-hr mean mass concentrations of NO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2}$$\\end{document}, PM10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10}$$\\end{document} and SPM were exceeded on \u223c\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim $$\\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2}$$\\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {NO}_{2}$$\\end{document}, PM10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {PM}_{10}$$\\end{document} and SPM showed an increasing trend while SO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {SO}_{2}$$\\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north\u2013northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12040-019-1070-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136531", 
        "issn": [
          "2347-4327", 
          "0253-4126"
        ], 
        "name": "Journal of Earth System Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "keywords": [
      "air pollutants", 
      "days", 
      "New Delhi", 
      "concentration", 
      "measurement days", 
      "human health", 
      "nitrogen dioxide", 
      "health", 
      "urban locations", 
      "mean mass concentration", 
      "particulate matter", 
      "National Ambient Air Quality Standard level", 
      "standard level", 
      "levels", 
      "Delhi", 
      "reduction", 
      "use", 
      "concern", 
      "measurements", 
      "scale", 
      "mass concentration", 
      "sulfur dioxide", 
      "SPM", 
      "trends", 
      "cluster analysis", 
      "analysis", 
      "long-term measurements", 
      "near-surface air pollutants", 
      "annual mean mass concentrations", 
      "matter", 
      "air mass cluster analysis", 
      "trajectory clusters", 
      "location", 
      "Indo-Gangetic Basin", 
      "pollutants", 
      "urban stations", 
      "distribution", 
      "different temporal scales", 
      "post-monsoon season", 
      "high mass concentration", 
      "clusters", 
      "temporal scales", 
      "reduction of sulfur", 
      "clean fuel", 
      "season", 
      "dioxide", 
      "natural gas", 
      "climate", 
      "trajectories", 
      "basin", 
      "stations", 
      "sulfur", 
      "diesel", 
      "fuel", 
      "gas", 
      "LPG", 
      "Simultaneous long-term measurements", 
      "total available measurement days", 
      "available measurement days", 
      "respective National Ambient Air Quality Standard (NAAQS) level", 
      "Ambient Air Quality Standard (NAAQS) level", 
      "Air Quality Standard (NAAQS) level", 
      "Quality Standard (NAAQS) level", 
      "winter/post-monsoon seasons", 
      "mass cluster analysis", 
      "north\u2013northwest trajectories", 
      "southeast trajectory cluster"
    ], 
    "name": "Long-term (2005\u20132012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin", 
    "pagination": "55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112387119"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12040-019-1070-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12040-019-1070-4", 
      "https://app.dimensions.ai/details/publication/pub.1112387119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_824.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12040-019-1070-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-019-1070-4'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      22 PREDICATES      101 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12040-019-1070-4 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:04
4 anzsrc-for:0403
5 anzsrc-for:0406
6 schema:author N0423c2ae1ca047f5bb0ccc838727fa3d
7 schema:citation sg:pub.10.1007/s10661-005-9043-2
8 sg:pub.10.1007/s10874-014-9295-8
9 sg:pub.10.1007/s11069-011-9931-4
10 sg:pub.10.1007/s11356-011-0633-y
11 sg:pub.10.1007/s11356-014-2768-0
12 sg:pub.10.1038/35082634
13 schema:datePublished 2019-02-25
14 schema:datePublishedReg 2019-02-25
15 schema:description Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005–2012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (NO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2})$$\end{document}, sulphur dioxide (SO2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2})$$\end{document}, particulate matter less than 10μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\upmu \hbox {m}$$\end{document} (PM10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10})$$\end{document} and suspended particulate matter (SPM) were found to be 62.0±27.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.0\,{\pm }\,27.6$$\end{document}, 12.5±8.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12.5\,{\pm }\,8.2$$\end{document}, 253.7±134\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$253.7\,{\pm }\,134$$\end{document} and 529.2±213.1μg/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$529.2\,{\pm }\,213.1\,\upmu \hbox {g}/\hbox {m}^{3}$$\end{document}, respectively. The 24-hr mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM were exceeded on ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document}, which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NO}_{2}$$\end{document}, PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{10}$$\end{document} and SPM showed an increasing trend while SO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {SO}_{2}$$\end{document} appears to be decreasing since 2008. Air mass cluster analysis showed that north–northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf Nb36b2072e13d40f0b8024a98fd14b4a5
20 Nbcfa87f64810465da289dbb2ee7faa10
21 sg:journal.1136531
22 schema:keywords Air Quality Standard (NAAQS) level
23 Ambient Air Quality Standard (NAAQS) level
24 Delhi
25 Indo-Gangetic Basin
26 LPG
27 National Ambient Air Quality Standard level
28 New Delhi
29 Quality Standard (NAAQS) level
30 SPM
31 Simultaneous long-term measurements
32 air mass cluster analysis
33 air pollutants
34 analysis
35 annual mean mass concentrations
36 available measurement days
37 basin
38 clean fuel
39 climate
40 cluster analysis
41 clusters
42 concentration
43 concern
44 days
45 diesel
46 different temporal scales
47 dioxide
48 distribution
49 fuel
50 gas
51 health
52 high mass concentration
53 human health
54 levels
55 location
56 long-term measurements
57 mass cluster analysis
58 mass concentration
59 matter
60 mean mass concentration
61 measurement days
62 measurements
63 natural gas
64 near-surface air pollutants
65 nitrogen dioxide
66 north–northwest trajectories
67 particulate matter
68 pollutants
69 post-monsoon season
70 reduction
71 reduction of sulfur
72 respective National Ambient Air Quality Standard (NAAQS) level
73 scale
74 season
75 southeast trajectory cluster
76 standard level
77 stations
78 sulfur
79 sulfur dioxide
80 temporal scales
81 total available measurement days
82 trajectories
83 trajectory clusters
84 trends
85 urban locations
86 urban stations
87 use
88 winter/post-monsoon seasons
89 schema:name Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin
90 schema:pagination 55
91 schema:productId N7d8bf0772a41446297cb33989cd2e505
92 Nba0bcfe84b1741e394eaf95ef2d6c116
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112387119
94 https://doi.org/10.1007/s12040-019-1070-4
95 schema:sdDatePublished 2022-01-01T18:53
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Nd1c73363b8824ab9b69393e8919a8a22
98 schema:url https://doi.org/10.1007/s12040-019-1070-4
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0423c2ae1ca047f5bb0ccc838727fa3d rdf:first sg:person.014311255640.37
103 rdf:rest N4a14496406ff43ee87609908c3611cdf
104 N2352f35d40ec44da88a14a91454c2629 rdf:first sg:person.01244434450.01
105 rdf:rest Ne6e1c9c35ce3470bbc0a8ce783979806
106 N3808911a07a44858b42477972494ed40 rdf:first sg:person.013306242572.84
107 rdf:rest N676d4c4df08e43cbb29980548130f6aa
108 N4a14496406ff43ee87609908c3611cdf rdf:first sg:person.0602123407.10
109 rdf:rest N72f06dffc77c4d578434ed15af6f0070
110 N4f1551e6a87f4405b94d3d71eef96340 rdf:first sg:person.01257207416.35
111 rdf:rest Nc061ee949ba9482991592e4d636acba9
112 N676d4c4df08e43cbb29980548130f6aa rdf:first sg:person.0635256750.16
113 rdf:rest N2352f35d40ec44da88a14a91454c2629
114 N72f06dffc77c4d578434ed15af6f0070 rdf:first sg:person.013036110713.52
115 rdf:rest N8939f9e428e743ba8304d3ecb7976d14
116 N7d8bf0772a41446297cb33989cd2e505 schema:name doi
117 schema:value 10.1007/s12040-019-1070-4
118 rdf:type schema:PropertyValue
119 N8939f9e428e743ba8304d3ecb7976d14 rdf:first sg:person.010306760135.44
120 rdf:rest N3808911a07a44858b42477972494ed40
121 N9c6076f62db140af9387c66baf520b8b schema:affiliation grid-institutes:grid.417983.0
122 schema:familyName Bisht
123 schema:givenName D S
124 rdf:type schema:Person
125 Nb36b2072e13d40f0b8024a98fd14b4a5 schema:volumeNumber 128
126 rdf:type schema:PublicationVolume
127 Nba0bcfe84b1741e394eaf95ef2d6c116 schema:name dimensions_id
128 schema:value pub.1112387119
129 rdf:type schema:PropertyValue
130 Nbcfa87f64810465da289dbb2ee7faa10 schema:issueNumber 3
131 rdf:type schema:PublicationIssue
132 Nc061ee949ba9482991592e4d636acba9 rdf:first sg:person.0625551746.30
133 rdf:rest rdf:nil
134 Nd1c73363b8824ab9b69393e8919a8a22 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Ne6e1c9c35ce3470bbc0a8ce783979806 rdf:first N9c6076f62db140af9387c66baf520b8b
137 rdf:rest N4f1551e6a87f4405b94d3d71eef96340
138 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
139 schema:name Physical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
142 schema:name Astronomical and Space Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
145 schema:name Earth Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
148 schema:name Geology
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
151 schema:name Physical Geography and Environmental Geoscience
152 rdf:type schema:DefinedTerm
153 sg:journal.1136531 schema:issn 0253-4126
154 2347-4327
155 schema:name Journal of Earth System Science
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.010306760135.44 schema:affiliation grid-institutes:None
159 schema:familyName Pandey
160 schema:givenName Chhavi P
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306760135.44
162 rdf:type schema:Person
163 sg:person.01244434450.01 schema:affiliation grid-institutes:grid.466772.6
164 schema:familyName Soni
165 schema:givenName V K
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244434450.01
167 rdf:type schema:Person
168 sg:person.01257207416.35 schema:affiliation grid-institutes:grid.417983.0
169 schema:familyName Tiwari
170 schema:givenName S
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257207416.35
172 rdf:type schema:Person
173 sg:person.013036110713.52 schema:affiliation grid-institutes:grid.411895.0
174 schema:familyName Nandan
175 schema:givenName Hemwati
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013036110713.52
177 rdf:type schema:Person
178 sg:person.013306242572.84 schema:affiliation grid-institutes:grid.464771.7
179 schema:familyName Agrawal
180 schema:givenName S
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306242572.84
182 rdf:type schema:Person
183 sg:person.014311255640.37 schema:affiliation grid-institutes:grid.411895.0
184 schema:familyName Kishore
185 schema:givenName N
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014311255640.37
187 rdf:type schema:Person
188 sg:person.0602123407.10 schema:affiliation grid-institutes:grid.417983.0
189 schema:familyName Srivastava
190 schema:givenName A K
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602123407.10
192 rdf:type schema:Person
193 sg:person.0625551746.30 schema:affiliation grid-institutes:grid.411507.6
194 schema:familyName Srivastava
195 schema:givenName Manoj K
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625551746.30
197 rdf:type schema:Person
198 sg:person.0635256750.16 schema:affiliation grid-institutes:grid.440527.0
199 schema:familyName Singh
200 schema:givenName N
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635256750.16
202 rdf:type schema:Person
203 sg:pub.10.1007/s10661-005-9043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026803105
204 https://doi.org/10.1007/s10661-005-9043-2
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s10874-014-9295-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007207527
207 https://doi.org/10.1007/s10874-014-9295-8
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s11069-011-9931-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021260855
210 https://doi.org/10.1007/s11069-011-9931-4
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s11356-011-0633-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032916056
213 https://doi.org/10.1007/s11356-011-0633-y
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s11356-014-2768-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014862274
216 https://doi.org/10.1007/s11356-014-2768-0
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/35082634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042344321
219 https://doi.org/10.1038/35082634
220 rdf:type schema:CreativeWork
221 grid-institutes:None schema:alternateName Wadia Institute of Himalaya Geology, Dehradun, India
222 schema:name Wadia Institute of Himalaya Geology, Dehradun, India
223 rdf:type schema:Organization
224 grid-institutes:grid.411507.6 schema:alternateName Department of Geophysics, Banaras Hindu University, Varanasi, India
225 schema:name Department of Geophysics, Banaras Hindu University, Varanasi, India
226 rdf:type schema:Organization
227 grid-institutes:grid.411895.0 schema:alternateName Department of Physics, Gurukula Kangri University, Haridwar, India
228 schema:name Department of Physics, Gurukula Kangri University, Haridwar, India
229 Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
230 rdf:type schema:Organization
231 grid-institutes:grid.417983.0 schema:alternateName Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
232 schema:name Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India
233 rdf:type schema:Organization
234 grid-institutes:grid.440527.0 schema:alternateName Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India
235 schema:name Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, India
236 rdf:type schema:Organization
237 grid-institutes:grid.464771.7 schema:alternateName Central Pollution Control Board, New Delhi, India
238 schema:name Central Pollution Control Board, New Delhi, India
239 rdf:type schema:Organization
240 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, Lodhi Road, New Delhi, India
241 schema:name India Meteorological Department, Lodhi Road, New Delhi, India
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...