Monitoring of severe weather events using RGB scheme of INSAT-3D satellite View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-01

AUTHORS

A K Mitra, Shailesh Parihar, S K Peshin, R Bhatla, R S Singh

ABSTRACT

In this study, real-time analysis of products and information dissemination (RAPID), a web-based quick visualisation and analysis tool for INSAT satellite data on a real-time basis has been introduced for identification of pre-monsoon severe weather events. The tool introduces the next generation weather data access and advanced visualisation. The combination of channels using red–green–blue (RGB) composites of INSAT-3D satellite and its physical significant value contents are presented. The solar reflectance and brightness temperatures (BTs) are the major components of the RGB composite. The solar reflectance component of the shortwave thermal infrared (IR) (1.6μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6~\upmu \hbox {m}$$\end{document}), visible (0.5μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.5~\upmu \hbox {m}$$\end{document}) and thermal IR channels (10.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8~\upmu \hbox {m}$$\end{document}) representing the cloud microstructure is known as Day Microphysics (DMP) RGB and the BT differences between 10.8, 12.0 and 3.9μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.9~\upmu \hbox {m}$$\end{document} is known as Night Microphysics (NMP) RGB. The threshold technique has been developed separately for both the RGB products of the year 2015–2016 and 2016–2017 of March–June, prior to the event (1–3 hr) for the detection of the thunderstorms. A validation analysis was conducted using the Forecast Demonstration Project of Storm Bulletins for pre-monsoon weather systems prepared by the India Meteorological Department and RADAR observations, demonstrating that this approach is extremely useful in recognising the area of convection prior to the occurrence of the events by the RGB thresholds. The validation of these thresholds has been carried out for March–June 2017. Both the RGBs i.e., DMP and NMP have a reasonable agreement with the ground-based observations and RADAR data. This threshold technique yields a very good probability of thunderstorm detection more than 94% and 93% with acceptable false alarm conditions, less than 3% and 5% for DMP and NMP, respectively. Furthermore, the limitations of these RGB products are additionally highlighted, and the future extent of refinement of these products in perspective of a rapid scan strategy is proposed. The threshold techniques are found to be useful for nowcasting application and are being used operationally using the RAPID tool. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12040-018-1057-6

DOI

http://dx.doi.org/10.1007/s12040-018-1057-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111836128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, 110 003, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, 110 003, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "A K", 
        "id": "sg:person.013165341400.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165341400.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, 110 003, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, 110 003, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parihar", 
        "givenName": "Shailesh", 
        "id": "sg:person.012671552635.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671552635.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "India Meteorological Department, 110 003, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.466772.6", 
          "name": [
            "India Meteorological Department, 110 003, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peshin", 
        "givenName": "S K", 
        "id": "sg:person.01117640147.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117640147.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Banaras Hindu University, 221 005, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Banaras Hindu University, 221 005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatla", 
        "givenName": "R", 
        "id": "sg:person.07760477471.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760477471.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Banaras Hindu University, 221 005, Varanasi, India", 
          "id": "http://www.grid.ac/institutes/grid.411507.6", 
          "name": [
            "Banaras Hindu University, 221 005, Varanasi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "R S", 
        "id": "sg:person.015103616352.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103616352.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35013030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034244455", 
          "https://doi.org/10.1038/35013030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0202-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023196748", 
          "https://doi.org/10.1007/s11069-012-0202-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-01", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this study, real-time analysis of products and information dissemination (RAPID), a web-based quick visualisation and analysis tool for INSAT satellite data on a real-time basis has been introduced for identification of pre-monsoon severe weather events. The tool introduces the next generation weather data access and advanced visualisation. The combination of channels using red\u2013green\u2013blue (RGB) composites of INSAT-3D satellite and its physical significant value contents are presented. The solar reflectance and brightness temperatures (BTs) are the major components of the RGB composite. The solar reflectance component of the shortwave thermal infrared (IR) (1.6\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1.6~\\upmu \\hbox {m}$$\\end{document}), visible (0.5\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0.5~\\upmu \\hbox {m}$$\\end{document}) and thermal IR channels (10.8\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$10.8~\\upmu \\hbox {m}$$\\end{document}) representing the cloud microstructure is known as Day Microphysics (DMP) RGB and the BT differences between 10.8, 12.0 and 3.9\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3.9~\\upmu \\hbox {m}$$\\end{document} is known as Night Microphysics (NMP) RGB. The threshold technique has been developed separately for both the RGB products of the year 2015\u20132016 and 2016\u20132017 of March\u2013June, prior to the event (1\u20133 hr) for the detection of the thunderstorms. A validation analysis was conducted using the Forecast Demonstration Project of Storm Bulletins for pre-monsoon weather systems prepared by the India Meteorological Department and RADAR observations, demonstrating that this approach is extremely useful in recognising the area of convection prior to the occurrence of the events by the RGB thresholds. The validation of these thresholds has been carried out for March\u2013June 2017. Both the RGBs i.e., DMP and NMP have a reasonable agreement with the ground-based observations and RADAR data. This threshold technique yields a very good probability of thunderstorm detection more than 94% and 93% with acceptable false alarm conditions, less than 3% and 5% for DMP and NMP, respectively. Furthermore, the limitations of these RGB products are additionally highlighted, and the future extent of refinement of these products in perspective of a rapid scan strategy is proposed. The threshold techniques are found to be useful for nowcasting application and are being used operationally using the RAPID tool.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12040-018-1057-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136531", 
        "issn": [
          "2347-4327", 
          "0253-4126"
        ], 
        "name": "Journal of Earth System Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "keywords": [
      "INSAT-3D satellite", 
      "RGB products", 
      "thermal IR channels", 
      "area of convection", 
      "solar reflectance", 
      "blue composite", 
      "brightness temperature", 
      "RGB composites", 
      "threshold technique", 
      "radar data", 
      "scan strategy", 
      "composites", 
      "real-time basis", 
      "severe weather events", 
      "ground-based observations", 
      "radar observations", 
      "RGB scheme", 
      "satellite data", 
      "alarm conditions", 
      "false alarm condition", 
      "reasonable agreement", 
      "satellite", 
      "microstructure", 
      "demonstration project", 
      "cloud microstructure", 
      "reflectance component", 
      "convection", 
      "weather systems", 
      "IR channels", 
      "weather events", 
      "real-time analysis", 
      "NMP", 
      "analysis tools", 
      "Meteorological Department", 
      "technique", 
      "reflectance", 
      "temperature", 
      "India Meteorological Department", 
      "rapid tool", 
      "combination of channels", 
      "BT differences", 
      "channels", 
      "products", 
      "components", 
      "applications", 
      "RGB", 
      "advanced visualisation", 
      "monitoring", 
      "validation analysis", 
      "thunderstorms", 
      "validation", 
      "refinement", 
      "tool", 
      "conditions", 
      "visualisation", 
      "agreement", 
      "system", 
      "observations", 
      "content", 
      "analysis", 
      "scheme", 
      "detection", 
      "Forecast Demonstration Project", 
      "year 2015", 
      "combination", 
      "major component", 
      "area", 
      "limitations", 
      "approach", 
      "thunderstorm detection", 
      "data", 
      "value content", 
      "project", 
      "threshold", 
      "strategies", 
      "basis", 
      "DMP", 
      "data access", 
      "good probability", 
      "study", 
      "extent", 
      "occurrence", 
      "events", 
      "future extent", 
      "probability", 
      "differences", 
      "identification", 
      "Bulletin", 
      "perspective", 
      "access", 
      "information dissemination", 
      "Department", 
      "dissemination", 
      "web-based quick visualisation", 
      "quick visualisation", 
      "INSAT satellite data", 
      "pre-monsoon severe weather events", 
      "next generation weather data access", 
      "generation weather data access", 
      "weather data access", 
      "physical significant value contents", 
      "significant value contents", 
      "solar reflectance component", 
      "Day Microphysics (DMP) RGB", 
      "Microphysics (DMP) RGB", 
      "Night Microphysics (NMP) RGB", 
      "Storm Bulletins", 
      "pre-monsoon weather systems", 
      "acceptable false alarm conditions", 
      "rapid scan strategy"
    ], 
    "name": "Monitoring of severe weather events using RGB scheme of INSAT-3D satellite", 
    "pagination": "36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111836128"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12040-018-1057-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12040-018-1057-6", 
      "https://app.dimensions.ai/details/publication/pub.1111836128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_821.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12040-018-1057-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-018-1057-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-018-1057-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-018-1057-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-018-1057-6'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      22 PREDICATES      140 URIs      127 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12040-018-1057-6 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:04
4 anzsrc-for:0403
5 anzsrc-for:0406
6 schema:author Ne26ce89603764896ad5f265ae8c3d730
7 schema:citation sg:pub.10.1007/s11069-012-0202-9
8 sg:pub.10.1038/35013030
9 schema:datePublished 2019-02-01
10 schema:datePublishedReg 2019-02-01
11 schema:description In this study, real-time analysis of products and information dissemination (RAPID), a web-based quick visualisation and analysis tool for INSAT satellite data on a real-time basis has been introduced for identification of pre-monsoon severe weather events. The tool introduces the next generation weather data access and advanced visualisation. The combination of channels using red–green–blue (RGB) composites of INSAT-3D satellite and its physical significant value contents are presented. The solar reflectance and brightness temperatures (BTs) are the major components of the RGB composite. The solar reflectance component of the shortwave thermal infrared (IR) (1.6μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6~\upmu \hbox {m}$$\end{document}), visible (0.5μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.5~\upmu \hbox {m}$$\end{document}) and thermal IR channels (10.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10.8~\upmu \hbox {m}$$\end{document}) representing the cloud microstructure is known as Day Microphysics (DMP) RGB and the BT differences between 10.8, 12.0 and 3.9μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.9~\upmu \hbox {m}$$\end{document} is known as Night Microphysics (NMP) RGB. The threshold technique has been developed separately for both the RGB products of the year 2015–2016 and 2016–2017 of March–June, prior to the event (1–3 hr) for the detection of the thunderstorms. A validation analysis was conducted using the Forecast Demonstration Project of Storm Bulletins for pre-monsoon weather systems prepared by the India Meteorological Department and RADAR observations, demonstrating that this approach is extremely useful in recognising the area of convection prior to the occurrence of the events by the RGB thresholds. The validation of these thresholds has been carried out for March–June 2017. Both the RGBs i.e., DMP and NMP have a reasonable agreement with the ground-based observations and RADAR data. This threshold technique yields a very good probability of thunderstorm detection more than 94% and 93% with acceptable false alarm conditions, less than 3% and 5% for DMP and NMP, respectively. Furthermore, the limitations of these RGB products are additionally highlighted, and the future extent of refinement of these products in perspective of a rapid scan strategy is proposed. The threshold techniques are found to be useful for nowcasting application and are being used operationally using the RAPID tool.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N4d20a550e6304c329d68e9f4c2090889
16 N8f85b8e50ee04f85b1100993828aae48
17 sg:journal.1136531
18 schema:keywords BT differences
19 Bulletin
20 DMP
21 Day Microphysics (DMP) RGB
22 Department
23 Forecast Demonstration Project
24 INSAT satellite data
25 INSAT-3D satellite
26 IR channels
27 India Meteorological Department
28 Meteorological Department
29 Microphysics (DMP) RGB
30 NMP
31 Night Microphysics (NMP) RGB
32 RGB
33 RGB composites
34 RGB products
35 RGB scheme
36 Storm Bulletins
37 acceptable false alarm conditions
38 access
39 advanced visualisation
40 agreement
41 alarm conditions
42 analysis
43 analysis tools
44 applications
45 approach
46 area
47 area of convection
48 basis
49 blue composite
50 brightness temperature
51 channels
52 cloud microstructure
53 combination
54 combination of channels
55 components
56 composites
57 conditions
58 content
59 convection
60 data
61 data access
62 demonstration project
63 detection
64 differences
65 dissemination
66 events
67 extent
68 false alarm condition
69 future extent
70 generation weather data access
71 good probability
72 ground-based observations
73 identification
74 information dissemination
75 limitations
76 major component
77 microstructure
78 monitoring
79 next generation weather data access
80 observations
81 occurrence
82 perspective
83 physical significant value contents
84 pre-monsoon severe weather events
85 pre-monsoon weather systems
86 probability
87 products
88 project
89 quick visualisation
90 radar data
91 radar observations
92 rapid scan strategy
93 rapid tool
94 real-time analysis
95 real-time basis
96 reasonable agreement
97 refinement
98 reflectance
99 reflectance component
100 satellite
101 satellite data
102 scan strategy
103 scheme
104 severe weather events
105 significant value contents
106 solar reflectance
107 solar reflectance component
108 strategies
109 study
110 system
111 technique
112 temperature
113 thermal IR channels
114 threshold
115 threshold technique
116 thunderstorm detection
117 thunderstorms
118 tool
119 validation
120 validation analysis
121 value content
122 visualisation
123 weather data access
124 weather events
125 weather systems
126 web-based quick visualisation
127 year 2015
128 schema:name Monitoring of severe weather events using RGB scheme of INSAT-3D satellite
129 schema:pagination 36
130 schema:productId N2ed91444e04948d6b5f05ce38d454087
131 Nfa6de58a12284d63a5ce181fbbfaaf05
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111836128
133 https://doi.org/10.1007/s12040-018-1057-6
134 schema:sdDatePublished 2021-11-01T18:35
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher Nf1683dbf9d0541d0b5c446f4a150a2d2
137 schema:url https://doi.org/10.1007/s12040-018-1057-6
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N0ae8dc541b0d4a1c92d2eb3a791fa988 rdf:first sg:person.07760477471.68
142 rdf:rest N4d883ff3d4334571b91c1550faf821ae
143 N0fc67c61f8524a4094e3fd35f7dc0b39 rdf:first sg:person.01117640147.35
144 rdf:rest N0ae8dc541b0d4a1c92d2eb3a791fa988
145 N16b0e2ac355147478859aa78c5763cc9 rdf:first sg:person.012671552635.85
146 rdf:rest N0fc67c61f8524a4094e3fd35f7dc0b39
147 N2ed91444e04948d6b5f05ce38d454087 schema:name dimensions_id
148 schema:value pub.1111836128
149 rdf:type schema:PropertyValue
150 N4d20a550e6304c329d68e9f4c2090889 schema:issueNumber 2
151 rdf:type schema:PublicationIssue
152 N4d883ff3d4334571b91c1550faf821ae rdf:first sg:person.015103616352.46
153 rdf:rest rdf:nil
154 N8f85b8e50ee04f85b1100993828aae48 schema:volumeNumber 128
155 rdf:type schema:PublicationVolume
156 Ne26ce89603764896ad5f265ae8c3d730 rdf:first sg:person.013165341400.50
157 rdf:rest N16b0e2ac355147478859aa78c5763cc9
158 Nf1683dbf9d0541d0b5c446f4a150a2d2 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 Nfa6de58a12284d63a5ce181fbbfaaf05 schema:name doi
161 schema:value 10.1007/s12040-018-1057-6
162 rdf:type schema:PropertyValue
163 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
164 schema:name Physical Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
167 schema:name Astronomical and Space Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
170 schema:name Earth Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
173 schema:name Geology
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
176 schema:name Physical Geography and Environmental Geoscience
177 rdf:type schema:DefinedTerm
178 sg:journal.1136531 schema:issn 0253-4126
179 2347-4327
180 schema:name Journal of Earth System Science
181 schema:publisher Springer Nature
182 rdf:type schema:Periodical
183 sg:person.01117640147.35 schema:affiliation grid-institutes:grid.466772.6
184 schema:familyName Peshin
185 schema:givenName S K
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117640147.35
187 rdf:type schema:Person
188 sg:person.012671552635.85 schema:affiliation grid-institutes:grid.466772.6
189 schema:familyName Parihar
190 schema:givenName Shailesh
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671552635.85
192 rdf:type schema:Person
193 sg:person.013165341400.50 schema:affiliation grid-institutes:grid.466772.6
194 schema:familyName Mitra
195 schema:givenName A K
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165341400.50
197 rdf:type schema:Person
198 sg:person.015103616352.46 schema:affiliation grid-institutes:grid.411507.6
199 schema:familyName Singh
200 schema:givenName R S
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103616352.46
202 rdf:type schema:Person
203 sg:person.07760477471.68 schema:affiliation grid-institutes:grid.411507.6
204 schema:familyName Bhatla
205 schema:givenName R
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760477471.68
207 rdf:type schema:Person
208 sg:pub.10.1007/s11069-012-0202-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023196748
209 https://doi.org/10.1007/s11069-012-0202-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/35013030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034244455
212 https://doi.org/10.1038/35013030
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.411507.6 schema:alternateName Banaras Hindu University, 221 005, Varanasi, India
215 schema:name Banaras Hindu University, 221 005, Varanasi, India
216 rdf:type schema:Organization
217 grid-institutes:grid.466772.6 schema:alternateName India Meteorological Department, 110 003, New Delhi, India
218 schema:name India Meteorological Department, 110 003, New Delhi, India
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...