Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Xingying You, Jinwu Tang

ABSTRACT

Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of <4, a gradient >1.2‱, a silty clay content of the concave bank >9.5%, and a median diameter of the bed sediment >0.158 mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river reaches without barrier properties should be systematically planned and regulated; drastic bank collapse and sandbar shrinking should be urgently controlled to prevent the loss of barrier effects. More... »

PAGES

61

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12040-017-0831-1

DOI

http://dx.doi.org/10.1007/s12040-017-0831-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086094749


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute", 
          "id": "https://www.grid.ac/institutes/grid.495684.2", 
          "name": [
            "State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, China", 
            "Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "You", 
        "givenName": "Xingying", 
        "id": "sg:person.012456261605.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456261605.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changjiang Institute of Survey, Planning, Design and Research", 
          "id": "https://www.grid.ac/institutes/grid.495315.f", 
          "name": [
            "Changjiang Institute of Survey Planning Design and Research, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Jinwu", 
        "id": "sg:person.011661450031.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011661450031.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.proenv.2012.01.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001288493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sedgeo.2016.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003790606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004688072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2015.10.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.03.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005938996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2014.09.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007312271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2014.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009867447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2011.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011147724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2015.10.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012383234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012714394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2013.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013439400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015172809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ancene.2015.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015548144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2009.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015560613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-6279(12)60023-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015985018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2016.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017591282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jher.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019294150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsames.2014.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020579373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2011.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022424980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023194424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024114492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2008.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024921306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jseaes.2015.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026750731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3839(99)00017-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026812717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027544925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2014.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027913425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-555x(02)00219-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028483477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2012.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030146361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2014.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032037050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032068516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2007.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032391409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quaint.2013.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032661131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032917398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2014.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033501902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2009.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034077911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2016.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034355624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jher.2016.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038858355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2008.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039671904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040295612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0037-0738(98)00082-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040590588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041715974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-6279(13)60046-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2013.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pgeola.2009.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046254401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047238009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2014.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050093014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051090027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2014.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051258304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2013.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051401905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2014.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051599049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gsf.2015.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051799051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.05.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053313719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.07.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053638609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of <4, a gradient >1.2\u2031, a silty clay content of the concave bank >9.5%, and a median diameter of the bed sediment >0.158 mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river reaches without barrier properties should be systematically planned and regulated; drastic bank collapse and sandbar shrinking should be urgently controlled to prevent the loss of barrier effects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12040-017-0831-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136531", 
        "issn": [
          "0253-4126", 
          "0973-774X"
        ], 
        "name": "Journal of Earth System Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "name": "Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China", 
    "pagination": "61", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb6c325e95e42c37fa56420ca2ef94bc5c2025be10e752a4a7ee6b01714cf2a3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12040-017-0831-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086094749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12040-017-0831-1", 
      "https://app.dimensions.ai/details/publication/pub.1086094749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12040-017-0831-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12040-017-0831-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12040-017-0831-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12040-017-0831-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12040-017-0831-1'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      84 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12040-017-0831-1 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N6c816812219e48eca48090606dc9ee56
4 schema:citation https://doi.org/10.1002/hyp.10077
5 https://doi.org/10.1016/j.advwatres.2009.09.004
6 https://doi.org/10.1016/j.advwatres.2014.06.015
7 https://doi.org/10.1016/j.advwatres.2014.12.012
8 https://doi.org/10.1016/j.ancene.2015.03.003
9 https://doi.org/10.1016/j.catena.2010.11.002
10 https://doi.org/10.1016/j.catena.2012.07.007
11 https://doi.org/10.1016/j.catena.2014.06.007
12 https://doi.org/10.1016/j.ecoleng.2013.10.012
13 https://doi.org/10.1016/j.ecolind.2015.10.058
14 https://doi.org/10.1016/j.enggeo.2014.05.002
15 https://doi.org/10.1016/j.geomorph.2005.11.003
16 https://doi.org/10.1016/j.geomorph.2006.01.044
17 https://doi.org/10.1016/j.geomorph.2006.03.019
18 https://doi.org/10.1016/j.geomorph.2006.03.035
19 https://doi.org/10.1016/j.geomorph.2006.07.037
20 https://doi.org/10.1016/j.geomorph.2007.01.022
21 https://doi.org/10.1016/j.geomorph.2008.07.001
22 https://doi.org/10.1016/j.geomorph.2008.08.001
23 https://doi.org/10.1016/j.geomorph.2009.01.020
24 https://doi.org/10.1016/j.geomorph.2011.06.042
25 https://doi.org/10.1016/j.geomorph.2011.08.017
26 https://doi.org/10.1016/j.geomorph.2013.01.011
27 https://doi.org/10.1016/j.geomorph.2013.04.029
28 https://doi.org/10.1016/j.geomorph.2014.05.016
29 https://doi.org/10.1016/j.geomorph.2014.06.016
30 https://doi.org/10.1016/j.geomorph.2014.07.018
31 https://doi.org/10.1016/j.geomorph.2015.04.014
32 https://doi.org/10.1016/j.geomorph.2015.05.033
33 https://doi.org/10.1016/j.geomorph.2015.08.018
34 https://doi.org/10.1016/j.geomorph.2015.09.003
35 https://doi.org/10.1016/j.geomorph.2015.09.009
36 https://doi.org/10.1016/j.geomorph.2016.01.002
37 https://doi.org/10.1016/j.geomorph.2016.01.012
38 https://doi.org/10.1016/j.gsf.2015.04.001
39 https://doi.org/10.1016/j.jher.2013.09.004
40 https://doi.org/10.1016/j.jher.2016.01.004
41 https://doi.org/10.1016/j.jhydrol.2005.09.023
42 https://doi.org/10.1016/j.jhydrol.2009.07.049
43 https://doi.org/10.1016/j.jhydrol.2011.03.043
44 https://doi.org/10.1016/j.jhydrol.2011.05.007
45 https://doi.org/10.1016/j.jhydrol.2012.01.042
46 https://doi.org/10.1016/j.jhydrol.2012.12.003
47 https://doi.org/10.1016/j.jhydrol.2015.05.063
48 https://doi.org/10.1016/j.jsames.2014.04.007
49 https://doi.org/10.1016/j.jseaes.2015.01.007
50 https://doi.org/10.1016/j.oceaneng.2014.09.043
51 https://doi.org/10.1016/j.pgeola.2009.12.002
52 https://doi.org/10.1016/j.proenv.2012.01.232
53 https://doi.org/10.1016/j.quaint.2013.03.001
54 https://doi.org/10.1016/j.scitotenv.2015.10.123
55 https://doi.org/10.1016/j.sedgeo.2016.01.005
56 https://doi.org/10.1016/s0037-0738(98)00082-7
57 https://doi.org/10.1016/s0169-555x(02)00219-2
58 https://doi.org/10.1016/s0378-3839(99)00017-4
59 https://doi.org/10.1016/s1001-6279(12)60023-7
60 https://doi.org/10.1016/s1001-6279(13)60046-3
61 schema:datePublished 2017-06
62 schema:datePublishedReg 2017-06-01
63 schema:description Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of <4, a gradient >1.2‱, a silty clay content of the concave bank >9.5%, and a median diameter of the bed sediment >0.158 mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river reaches without barrier properties should be systematically planned and regulated; drastic bank collapse and sandbar shrinking should be urgently controlled to prevent the loss of barrier effects.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf N0ea6a80e844f483b803a536e16fba0c1
68 N6d645bd581bb41f5b96de1bdac4c4df4
69 sg:journal.1136531
70 schema:name Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China
71 schema:pagination 61
72 schema:productId N2ea97d045135480784f2d997c301a5d6
73 N4cec08ccc12c42c1876ac803e3f6e02c
74 N85dc309df89243c59cf812c8b49645e4
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086094749
76 https://doi.org/10.1007/s12040-017-0831-1
77 schema:sdDatePublished 2019-04-11T10:29
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N7246bf250d2944fb831bc2b8c654957d
80 schema:url https://link.springer.com/10.1007%2Fs12040-017-0831-1
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0ea6a80e844f483b803a536e16fba0c1 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 N2ea97d045135480784f2d997c301a5d6 schema:name readcube_id
87 schema:value eb6c325e95e42c37fa56420ca2ef94bc5c2025be10e752a4a7ee6b01714cf2a3
88 rdf:type schema:PropertyValue
89 N4cec08ccc12c42c1876ac803e3f6e02c schema:name dimensions_id
90 schema:value pub.1086094749
91 rdf:type schema:PropertyValue
92 N6c816812219e48eca48090606dc9ee56 rdf:first sg:person.012456261605.21
93 rdf:rest Na325b9fd392447839ea0cb3dea48d7dd
94 N6d645bd581bb41f5b96de1bdac4c4df4 schema:volumeNumber 126
95 rdf:type schema:PublicationVolume
96 N7246bf250d2944fb831bc2b8c654957d schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N85dc309df89243c59cf812c8b49645e4 schema:name doi
99 schema:value 10.1007/s12040-017-0831-1
100 rdf:type schema:PropertyValue
101 Na325b9fd392447839ea0cb3dea48d7dd rdf:first sg:person.011661450031.80
102 rdf:rest rdf:nil
103 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
104 schema:name Earth Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Geography and Environmental Geoscience
108 rdf:type schema:DefinedTerm
109 sg:journal.1136531 schema:issn 0253-4126
110 0973-774X
111 schema:name Journal of Earth System Science
112 rdf:type schema:Periodical
113 sg:person.011661450031.80 schema:affiliation https://www.grid.ac/institutes/grid.495315.f
114 schema:familyName Tang
115 schema:givenName Jinwu
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011661450031.80
117 rdf:type schema:Person
118 sg:person.012456261605.21 schema:affiliation https://www.grid.ac/institutes/grid.495684.2
119 schema:familyName You
120 schema:givenName Xingying
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456261605.21
122 rdf:type schema:Person
123 https://doi.org/10.1002/hyp.10077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917398
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.advwatres.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034077911
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.advwatres.2014.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009867447
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.advwatres.2014.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051599049
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ancene.2015.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015548144
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.catena.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024114492
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.catena.2012.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030146361
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.catena.2014.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051258304
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ecoleng.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013439400
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ecolind.2015.10.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005729816
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.enggeo.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501902
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.geomorph.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041715974
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.geomorph.2006.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012714394
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.geomorph.2006.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004688072
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.geomorph.2006.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051090027
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.geomorph.2006.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038858355
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.geomorph.2007.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032391409
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.geomorph.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039671904
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.geomorph.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024921306
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.geomorph.2009.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015560613
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.geomorph.2011.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011147724
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.geomorph.2011.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022424980
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.geomorph.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401090
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.geomorph.2013.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051401905
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.geomorph.2014.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050093014
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.geomorph.2014.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032037050
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.geomorph.2014.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027913425
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.geomorph.2015.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047238009
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.geomorph.2015.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051283983
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.geomorph.2015.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015985018
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.geomorph.2015.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203558
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.geomorph.2015.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027544925
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.geomorph.2016.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591282
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.geomorph.2016.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034355624
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.gsf.2015.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051799051
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jher.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019294150
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.jher.2016.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453577
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jhydrol.2005.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023194424
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jhydrol.2009.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053638609
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jhydrol.2011.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005938996
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jhydrol.2011.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032068516
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jhydrol.2012.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040295612
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jhydrol.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015172809
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.jhydrol.2015.05.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313719
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jsames.2014.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579373
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.jseaes.2015.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026750731
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.oceaneng.2014.09.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007312271
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.pgeola.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046254401
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.proenv.2012.01.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001288493
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.quaint.2013.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032661131
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.scitotenv.2015.10.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012383234
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.sedgeo.2016.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003790606
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s0037-0738(98)00082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040590588
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s0169-555x(02)00219-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028483477
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0378-3839(99)00017-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026812717
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s1001-6279(12)60023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710509
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s1001-6279(13)60046-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547777
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.495315.f schema:alternateName Changjiang Institute of Survey, Planning, Design and Research
238 schema:name Changjiang Institute of Survey Planning Design and Research, Wuhan, China
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.495684.2 schema:alternateName Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute
241 schema:name Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute, Wuhan, China
242 State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, China
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...