Use of polydispersity index as control parameter to study melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

SARMISTHA SARKAR, RAJIB BISWAS, PARTHA PRATIM RAY, BIMAN BAGCHI

ABSTRACT

Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (δP) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity,δP) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, δP shifts to higher values. This temperature and number density dependent value of δP saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (δTP). This value (δTP∼ 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (δTP) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting. Graphical AbstractThe Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement. The Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement. More... »

PAGES

1715-1728

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12039-015-0937-4

DOI

http://dx.doi.org/10.1007/s12039-015-0937-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031244017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012, Bangalore, India", 
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SARKAR", 
        "givenName": "SARMISTHA", 
        "id": "sg:person.0706460122.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706460122.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BISWAS", 
        "givenName": "RAJIB", 
        "id": "sg:person.01251661447.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251661447.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "RAY", 
        "givenName": "PARTHA PRATIM", 
        "id": "sg:person.014652265573.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652265573.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BAGCHI", 
        "givenName": "BIMAN", 
        "id": "sg:person.0631365007.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631365007.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35099513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011847900", 
          "https://doi.org/10.1038/35099513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35099513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011847900", 
          "https://doi.org/10.1038/35099513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7322(02)00055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020390587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7322(02)00055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020390587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4769981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027670676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.167801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029304400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.167801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029304400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.011011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029447807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.011011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029447807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.248301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032404855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.248301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032404855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(71)90091-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(71)90091-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2358136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049245668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268979500100921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051605512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0544383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0544383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la00022a030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056137770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01987004805070900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1750949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057812879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2737054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.432687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058010719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.433110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058011142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.434014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058012045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.439436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058017465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.441326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058019354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.443029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058021056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.445726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058023746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.447235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058025255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.447775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058025795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.448769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058026789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.450476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058028494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4731705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.476453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058062704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.479282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058069893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.184.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060442237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.184.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060442237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.2145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.2145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.2775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.2775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.4441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.4441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.5522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.5522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.021506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.021506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.011201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.011201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.011602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.011602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.031506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.031506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.012122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.012122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.43.1723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063103142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.45.749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063104017"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (\u03b4P) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity,\u03b4P) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, \u03b4P shifts to higher values. This temperature and number density dependent value of \u03b4P saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (\u03b4TP). This value (\u03b4TP\u223c 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (\u03b4TP) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting. Graphical AbstractThe Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement. The Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12039-015-0937-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048512", 
        "issn": [
          "0253-4134", 
          "0973-7103"
        ], 
        "name": "Journal of Chemical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Use of polydispersity index as control parameter to study melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with Lindemann criterion, inherent structure analysis and Hansen-Verlet rule", 
    "pagination": "1715-1728", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "94d78ae589e7b9a6c8b761f1aace1eb5a3b275ab9c50b84cf1fc58f6e73c70d5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12039-015-0937-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031244017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12039-015-0937-4", 
      "https://app.dimensions.ai/details/publication/pub.1031244017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12039-015-0937-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12039-015-0937-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12039-015-0937-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12039-015-0937-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12039-015-0937-4'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      81 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12039-015-0937-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N6679b4cba39b438a9429b92736a909ed
4 schema:citation sg:pub.10.1038/35099513
5 https://doi.org/10.1016/0031-8914(71)90091-7
6 https://doi.org/10.1016/s0167-7322(02)00055-7
7 https://doi.org/10.1021/jp0544383
8 https://doi.org/10.1021/la00022a030
9 https://doi.org/10.1051/jphys:01987004805070900
10 https://doi.org/10.1063/1.1750949
11 https://doi.org/10.1063/1.2358136
12 https://doi.org/10.1063/1.2737054
13 https://doi.org/10.1063/1.432687
14 https://doi.org/10.1063/1.433110
15 https://doi.org/10.1063/1.434014
16 https://doi.org/10.1063/1.439436
17 https://doi.org/10.1063/1.441326
18 https://doi.org/10.1063/1.443029
19 https://doi.org/10.1063/1.445680
20 https://doi.org/10.1063/1.445726
21 https://doi.org/10.1063/1.447235
22 https://doi.org/10.1063/1.447775
23 https://doi.org/10.1063/1.448769
24 https://doi.org/10.1063/1.450476
25 https://doi.org/10.1063/1.4731705
26 https://doi.org/10.1063/1.476453
27 https://doi.org/10.1063/1.4769981
28 https://doi.org/10.1063/1.479282
29 https://doi.org/10.1080/00268979500100921
30 https://doi.org/10.1103/physrev.184.151
31 https://doi.org/10.1103/physreva.3.2145
32 https://doi.org/10.1103/physrevb.19.2775
33 https://doi.org/10.1103/physrevb.28.6411
34 https://doi.org/10.1103/physrevb.28.784
35 https://doi.org/10.1103/physrevb.29.2857
36 https://doi.org/10.1103/physrevb.37.4441
37 https://doi.org/10.1103/physreve.54.634
38 https://doi.org/10.1103/physreve.55.5522
39 https://doi.org/10.1103/physreve.59.618
40 https://doi.org/10.1103/physreve.60.3009
41 https://doi.org/10.1103/physreve.64.021506
42 https://doi.org/10.1103/physreve.76.011201
43 https://doi.org/10.1103/physreve.78.011602
44 https://doi.org/10.1103/physreve.83.021120
45 https://doi.org/10.1103/physreve.83.031506
46 https://doi.org/10.1103/physreve.88.012122
47 https://doi.org/10.1103/physreve.88.022104
48 https://doi.org/10.1103/physrevlett.100.167801
49 https://doi.org/10.1103/physrevlett.25.1423
50 https://doi.org/10.1103/physrevlett.48.541
51 https://doi.org/10.1103/physrevlett.54.1059
52 https://doi.org/10.1103/physrevlett.70.1557
53 https://doi.org/10.1103/physrevlett.82.1979
54 https://doi.org/10.1103/physrevlett.95.248301
55 https://doi.org/10.1103/physrevx.2.011011
56 https://doi.org/10.1143/jpsj.43.1723
57 https://doi.org/10.1143/jpsj.45.749
58 schema:datePublished 2015-10
59 schema:datePublishedReg 2015-10-01
60 schema:description Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (δP) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity,δP) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, δP shifts to higher values. This temperature and number density dependent value of δP saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (δTP). This value (δTP∼ 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (δTP) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting. Graphical AbstractThe Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement. The Lindemann criterion for melting, inherent structure analysis and Hansen Verlet rule of freezing are shown to be consistent with each other in providing a measure for terminal polydispersity of Lennard-Jones system. A two order parameter scaled phase diagram showing limits of stability for liquid and solid is also in good agreement.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N269ac9a4a8044310a7ad40f39327f4bf
65 Nb77476f6ad3f494993f5908896c7c3f1
66 sg:journal.1048512
67 schema:name Use of polydispersity index as control parameter to study melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with Lindemann criterion, inherent structure analysis and Hansen-Verlet rule
68 schema:pagination 1715-1728
69 schema:productId N1479af449ca34f72a2422b0e21b628c9
70 N36922d79dcd54cf2bbbc85e116083195
71 Nf698f827ff154149ada32b8de27e5328
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031244017
73 https://doi.org/10.1007/s12039-015-0937-4
74 schema:sdDatePublished 2019-04-10T21:39
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ndce61046f6db4acfb972c3b6589cfe89
77 schema:url http://link.springer.com/10.1007%2Fs12039-015-0937-4
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1479af449ca34f72a2422b0e21b628c9 schema:name readcube_id
82 schema:value 94d78ae589e7b9a6c8b761f1aace1eb5a3b275ab9c50b84cf1fc58f6e73c70d5
83 rdf:type schema:PropertyValue
84 N223bcebf16ce4e15bebbe13f26992b95 rdf:first sg:person.014652265573.50
85 rdf:rest Ne64993a50006425ab3ba6228e9d0a331
86 N269ac9a4a8044310a7ad40f39327f4bf schema:volumeNumber 127
87 rdf:type schema:PublicationVolume
88 N36922d79dcd54cf2bbbc85e116083195 schema:name dimensions_id
89 schema:value pub.1031244017
90 rdf:type schema:PropertyValue
91 N6679b4cba39b438a9429b92736a909ed rdf:first sg:person.0706460122.11
92 rdf:rest Na726c255957642d68a4f8701577feaf6
93 Na726c255957642d68a4f8701577feaf6 rdf:first sg:person.01251661447.44
94 rdf:rest N223bcebf16ce4e15bebbe13f26992b95
95 Nb77476f6ad3f494993f5908896c7c3f1 schema:issueNumber 10
96 rdf:type schema:PublicationIssue
97 Ndce61046f6db4acfb972c3b6589cfe89 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ne64993a50006425ab3ba6228e9d0a331 rdf:first sg:person.0631365007.69
100 rdf:rest rdf:nil
101 Nf698f827ff154149ada32b8de27e5328 schema:name doi
102 schema:value 10.1007/s12039-015-0937-4
103 rdf:type schema:PropertyValue
104 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
105 schema:name Chemical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Chemistry (incl. Structural)
109 rdf:type schema:DefinedTerm
110 sg:journal.1048512 schema:issn 0253-4134
111 0973-7103
112 schema:name Journal of Chemical Sciences
113 rdf:type schema:Periodical
114 sg:person.01251661447.44 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
115 schema:familyName BISWAS
116 schema:givenName RAJIB
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251661447.44
118 rdf:type schema:Person
119 sg:person.014652265573.50 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
120 schema:familyName RAY
121 schema:givenName PARTHA PRATIM
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652265573.50
123 rdf:type schema:Person
124 sg:person.0631365007.69 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
125 schema:familyName BAGCHI
126 schema:givenName BIMAN
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631365007.69
128 rdf:type schema:Person
129 sg:person.0706460122.11 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
130 schema:familyName SARKAR
131 schema:givenName SARMISTHA
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706460122.11
133 rdf:type schema:Person
134 sg:pub.10.1038/35099513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011847900
135 https://doi.org/10.1038/35099513
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0031-8914(71)90091-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639400
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0167-7322(02)00055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020390587
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jp0544383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056062572
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/la00022a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056137770
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/jphys:01987004805070900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991792
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1750949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057812879
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2358136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049245668
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.2737054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861739
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.432687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058010719
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.433110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058011142
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.434014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058012045
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.439436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017465
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.441326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058019354
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.443029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058021056
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.445680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023700
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.445726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058023746
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.447235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025255
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1063/1.447775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025795
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1063/1.448769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058026789
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.450476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058028494
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.4731705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054114
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.476453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058062704
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.4769981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027670676
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.479282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069893
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/00268979500100921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051605512
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrev.184.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060442237
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physreva.3.2145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472381
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.19.2775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525055
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.28.6411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533699
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.28.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533864
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.29.2857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534209
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.37.4441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545537
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreve.54.634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720148
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.55.5522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720790
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.59.618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723845
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.60.3009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724198
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreve.64.021506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727102
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreve.76.011201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736134
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physreve.78.011602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737627
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physreve.83.021120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741458
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physreve.83.031506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741562
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physreve.88.012122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745036
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physreve.88.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745151
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.100.167801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029304400
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.25.1423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773774
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.48.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787362
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.54.1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791108
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.70.1557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806464
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.82.1979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819058
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.95.248301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032404855
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevx.2.011011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029447807
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1143/jpsj.43.1723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063103142
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1143/jpsj.45.749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063104017
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
244 schema:name Department of Physics, Jadavpur University, 700 032, Kolkata, India
245 Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012, Bangalore, India
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
248 schema:name Solid State and Structural Chemistry Unit, Indian Institute of Science, 560 012, Bangalore, India
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...