Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Rahul Shaw, Sudip Kundu

ABSTRACT

Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio. More... »

PAGES

819-828

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12038-015-9563-z

DOI

http://dx.doi.org/10.1007/s12038-015-9563-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023185469

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26564982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carrier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chloroplasts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crops, Agricultural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oryza", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Leaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Starch", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, 700009, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Rahul", 
        "id": "sg:person.01234033727.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234033727.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Calcutta", 
          "id": "https://www.grid.ac/institutes/grid.59056.3f", 
          "name": [
            "Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, 700009, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundu", 
        "givenName": "Sudip", 
        "id": "sg:person.0667720624.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667720624.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/384223a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002481530", 
          "https://doi.org/10.1038/384223a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006257294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.113.216762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009682564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m403782200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021796192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029143382", 
          "https://doi.org/10.1038/nbt1492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527619368.ch20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029293447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tpj.12252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030813431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2465-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038759655", 
          "https://doi.org/10.1007/978-90-481-2465-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2465-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038759655", 
          "https://doi.org/10.1007/978-90-481-2465-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1462-2920.2002.00282.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040662600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfca.2004.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041473426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041682316", 
          "https://doi.org/10.1038/nature11478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044054586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044054586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045259071", 
          "https://doi.org/10.1038/nbt.1614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045259071", 
          "https://doi.org/10.1038/nbt.1614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.141267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046235102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2003.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051235017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2010.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051584343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.114.245787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052825709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-45062-4_93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053704550", 
          "https://doi.org/10.1007/978-3-642-45062-4_93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-syb:20060010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-syb:20060012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/132.3.506s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075009356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082595939", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12038-015-9563-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092026", 
        "issn": [
          "0253-410X", 
          "0973-7138"
        ], 
        "name": "Journal of Biosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass", 
    "pagination": "819-828", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e761b3baa1bc1e3eaa5644c300906766a0012c1a4003aac38bb7eaf916f871e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26564982"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8100809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12038-015-9563-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023185469"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12038-015-9563-z", 
      "https://app.dimensions.ai/details/publication/pub.1023185469"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12038-015-9563-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9563-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9563-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9563-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9563-z'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      67 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12038-015-9563-z schema:about N07f604e16b9647ef869088d842bf3586
2 N19cc821b9c004d62a4b93e3a0c0a70f0
3 N2b1439b0dc444f2b9e68d8ec0e26a1c0
4 N4edfe1fb713740dc9fd6577c96ab955a
5 N4f6c3722e04548ba9995d700b672fb96
6 N6e7b61218cd948e1af8c43591466799a
7 N72d4c2d3490e403da563bc5c24e64a89
8 N87d12619433640aaa46175f4ba1047a1
9 N93310df6803f45aba7ef2025d9980e54
10 N957dcb1f1ebd43c8900ad5a0b4c23dcf
11 N97d8496960964e12bd8d053bba433575
12 N9a252b56fac944d69457054b0fb11b62
13 Na8c0648b61844645819dce6d9e910cc7
14 Nad314418b07f4af287d146245cb65f35
15 Nba9640379fb44a858b41e96b12c7227b
16 Ncde0d505446c4584b1555f0f07d49684
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N0e493bf400564938beebfd9462a5ebda
20 schema:citation sg:pub.10.1007/978-3-642-45062-4_93
21 sg:pub.10.1007/978-90-481-2465-7
22 sg:pub.10.1038/384223a0
23 sg:pub.10.1038/nature11478
24 sg:pub.10.1038/nbt.1614
25 sg:pub.10.1038/nbt1492
26 https://app.dimensions.ai/details/publication/pub.1082595939
27 https://doi.org/10.1002/9783527619368.ch20
28 https://doi.org/10.1016/j.copbio.2003.08.001
29 https://doi.org/10.1016/j.fcr.2008.04.001
30 https://doi.org/10.1016/j.gloenvcha.2003.10.008
31 https://doi.org/10.1016/j.jfca.2004.09.006
32 https://doi.org/10.1016/j.tplants.2010.05.006
33 https://doi.org/10.1046/j.1462-2920.2002.00282.x
34 https://doi.org/10.1049/ip-syb:20060010
35 https://doi.org/10.1049/ip-syb:20060012
36 https://doi.org/10.1074/jbc.m403782200
37 https://doi.org/10.1093/jn/132.3.506s
38 https://doi.org/10.1104/pp.109.141267
39 https://doi.org/10.1104/pp.113.216762
40 https://doi.org/10.1104/pp.114.245787
41 https://doi.org/10.1111/tpj.12252
42 schema:datePublished 2015-10
43 schema:datePublishedReg 2015-10-01
44 schema:description Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs' transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs' transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Nca518dfd37024080985700a7abb4ba42
49 Nd7f196020194479781bb4ef2e9bafca0
50 sg:journal.1092026
51 schema:name Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass
52 schema:pagination 819-828
53 schema:productId N1eaf6369abcd49ce90b3b4a91c7aa8dc
54 N6209098a2ae54051b2ba4488215e019e
55 N6e86f93a2f834e6e9b20b12a1f0c5313
56 N7b1f1f461fbc42038fc328d70b73d4f5
57 Nc816cc7f29c64ad8ad85b1b4e8a6e27e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023185469
59 https://doi.org/10.1007/s12038-015-9563-z
60 schema:sdDatePublished 2019-04-10T17:34
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nea545a596b85469184b53d0e34479df7
63 schema:url http://link.springer.com/10.1007%2Fs12038-015-9563-z
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N07f604e16b9647ef869088d842bf3586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Algorithms
69 rdf:type schema:DefinedTerm
70 N0e493bf400564938beebfd9462a5ebda rdf:first sg:person.01234033727.14
71 rdf:rest N62bdb35cd20c4cc38b3328061f1d9451
72 N19cc821b9c004d62a4b93e3a0c0a70f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Carbon
74 rdf:type schema:DefinedTerm
75 N1eaf6369abcd49ce90b3b4a91c7aa8dc schema:name readcube_id
76 schema:value 6e761b3baa1bc1e3eaa5644c300906766a0012c1a4003aac38bb7eaf916f871e
77 rdf:type schema:PropertyValue
78 N2b1439b0dc444f2b9e68d8ec0e26a1c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Nitrogen
80 rdf:type schema:DefinedTerm
81 N4edfe1fb713740dc9fd6577c96ab955a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Crops, Agricultural
83 rdf:type schema:DefinedTerm
84 N4f6c3722e04548ba9995d700b672fb96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Models, Biological
86 rdf:type schema:DefinedTerm
87 N6209098a2ae54051b2ba4488215e019e schema:name nlm_unique_id
88 schema:value 8100809
89 rdf:type schema:PropertyValue
90 N62bdb35cd20c4cc38b3328061f1d9451 rdf:first sg:person.0667720624.89
91 rdf:rest rdf:nil
92 N6e7b61218cd948e1af8c43591466799a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Metabolic Networks and Pathways
94 rdf:type schema:DefinedTerm
95 N6e86f93a2f834e6e9b20b12a1f0c5313 schema:name dimensions_id
96 schema:value pub.1023185469
97 rdf:type schema:PropertyValue
98 N72d4c2d3490e403da563bc5c24e64a89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Starch
100 rdf:type schema:DefinedTerm
101 N7b1f1f461fbc42038fc328d70b73d4f5 schema:name pubmed_id
102 schema:value 26564982
103 rdf:type schema:PropertyValue
104 N87d12619433640aaa46175f4ba1047a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Oryza
106 rdf:type schema:DefinedTerm
107 N93310df6803f45aba7ef2025d9980e54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Glycine
109 rdf:type schema:DefinedTerm
110 N957dcb1f1ebd43c8900ad5a0b4c23dcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Plant Proteins
112 rdf:type schema:DefinedTerm
113 N97d8496960964e12bd8d053bba433575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Chloroplasts
115 rdf:type schema:DefinedTerm
116 N9a252b56fac944d69457054b0fb11b62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Plant Leaves
118 rdf:type schema:DefinedTerm
119 Na8c0648b61844645819dce6d9e910cc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Biomass
121 rdf:type schema:DefinedTerm
122 Nad314418b07f4af287d146245cb65f35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genome, Plant
124 rdf:type schema:DefinedTerm
125 Nba9640379fb44a858b41e96b12c7227b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Carrier Proteins
127 rdf:type schema:DefinedTerm
128 Nc816cc7f29c64ad8ad85b1b4e8a6e27e schema:name doi
129 schema:value 10.1007/s12038-015-9563-z
130 rdf:type schema:PropertyValue
131 Nca518dfd37024080985700a7abb4ba42 schema:issueNumber 4
132 rdf:type schema:PublicationIssue
133 Ncde0d505446c4584b1555f0f07d49684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Gene Expression
135 rdf:type schema:DefinedTerm
136 Nd7f196020194479781bb4ef2e9bafca0 schema:volumeNumber 40
137 rdf:type schema:PublicationVolume
138 Nea545a596b85469184b53d0e34479df7 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biological Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biochemistry and Cell Biology
145 rdf:type schema:DefinedTerm
146 sg:journal.1092026 schema:issn 0253-410X
147 0973-7138
148 schema:name Journal of Biosciences
149 rdf:type schema:Periodical
150 sg:person.01234033727.14 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
151 schema:familyName Shaw
152 schema:givenName Rahul
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234033727.14
154 rdf:type schema:Person
155 sg:person.0667720624.89 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
156 schema:familyName Kundu
157 schema:givenName Sudip
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667720624.89
159 rdf:type schema:Person
160 sg:pub.10.1007/978-3-642-45062-4_93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053704550
161 https://doi.org/10.1007/978-3-642-45062-4_93
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-90-481-2465-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038759655
164 https://doi.org/10.1007/978-90-481-2465-7
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/384223a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002481530
167 https://doi.org/10.1038/384223a0
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature11478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041682316
170 https://doi.org/10.1038/nature11478
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nbt.1614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045259071
173 https://doi.org/10.1038/nbt.1614
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nbt1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029143382
176 https://doi.org/10.1038/nbt1492
177 rdf:type schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1082595939 schema:CreativeWork
179 https://doi.org/10.1002/9783527619368.ch20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029293447
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.copbio.2003.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044054586
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.fcr.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006257294
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.gloenvcha.2003.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051235017
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jfca.2004.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041473426
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.tplants.2010.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051584343
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1046/j.1462-2920.2002.00282.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040662600
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1049/ip-syb:20060010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860285
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1049/ip-syb:20060012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860286
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1074/jbc.m403782200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796192
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/jn/132.3.506s schema:sameAs https://app.dimensions.ai/details/publication/pub.1075009356
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1104/pp.109.141267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046235102
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1104/pp.113.216762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009682564
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1104/pp.114.245787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052825709
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/tpj.12252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030813431
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.59056.3f schema:alternateName University of Calcutta
210 schema:name Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, 700009, Kolkata, India
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...