Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09-29

AUTHORS

Arnold Emerson Isaac, Sitabhra Sinha

ABSTRACT

The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core–periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers – having higher core order – with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core–periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/~sitabhra/proteinKcore/index.html. More... »

PAGES

683-699

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12038-015-9554-0

DOI

http://dx.doi.org/10.1007/s12038-015-9554-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040662330

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26564971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Cell Surface", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore, India", 
          "id": "http://www.grid.ac/institutes/grid.412813.d", 
          "name": [
            "Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isaac", 
        "givenName": "Arnold Emerson", 
        "id": "sg:person.01363645127.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363645127.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Sitabhra", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35075138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038990326", 
          "https://doi.org/10.1038/35075138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182501", 
          "https://doi.org/10.1038/1354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0006350906070128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046560084", 
          "https://doi.org/10.1134/s0006350906070128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/14901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027631794", 
          "https://doi.org/10.1038/14901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-13-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009044166", 
          "https://doi.org/10.1186/1472-6807-13-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021493065", 
          "https://doi.org/10.1038/35054591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-009-0299-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039873146", 
          "https://doi.org/10.1007/s11227-009-0299-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030191642", 
          "https://doi.org/10.1038/nchembio.603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12043-008-0170-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029858734", 
          "https://doi.org/10.1007/s12043-008-0170-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028329379", 
          "https://doi.org/10.1038/1412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016710118", 
          "https://doi.org/10.1038/nphys1746"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-29", 
    "datePublishedReg": "2015-09-29", 
    "description": "The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core\u2013periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers \u2013 having higher core order \u2013 with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core\u2013periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/~sitabhra/proteinKcore/index.html.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12038-015-9554-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092026", 
        "issn": [
          "0250-5991", 
          "0973-7138"
        ], 
        "name": "Journal of Biosciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "protein contact networks", 
      "native state", 
      "key functional role", 
      "representation of proteins", 
      "most proteins", 
      "critical residues", 
      "available web resources", 
      "center residues", 
      "functional importance", 
      "functional role", 
      "amino acids", 
      "amino acid constituents", 
      "novel insights", 
      "protein", 
      "structural pocket", 
      "residues", 
      "active sites increases", 
      "ligand molecules", 
      "acid constituents", 
      "innermost core", 
      "hierarchical classification", 
      "mutations", 
      "subsequent analysis", 
      "pocket", 
      "specific groups", 
      "web resources", 
      "periphery", 
      "receptor sites", 
      "structural stability", 
      "sites", 
      "molecules", 
      "acid", 
      "contact networks", 
      "insights", 
      "analysis", 
      "role", 
      "sites increases", 
      "organization", 
      "importance", 
      "constituents", 
      "core", 
      "network", 
      "association", 
      "core-periphery organization", 
      "resources", 
      "tool", 
      "increase", 
      "group", 
      "state", 
      "order", 
      "density", 
      "stability", 
      "results", 
      "inner core", 
      "core-periphery analysis", 
      "classification", 
      "cavity", 
      "network core", 
      "index", 
      "graph-theoretic tools", 
      "probability", 
      "theoretic tools", 
      "terms", 
      "sensitivity analysis", 
      "connection density", 
      "representation"
    ], 
    "name": "Analysis of core\u2013periphery organization in protein contact networks reveals groups of structurally and functionally critical residues", 
    "pagination": "683-699", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040662330"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12038-015-9554-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26564971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12038-015-9554-0", 
      "https://app.dimensions.ai/details/publication/pub.1040662330"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_659.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12038-015-9554-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9554-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9554-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9554-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12038-015-9554-0'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      22 PREDICATES      117 URIs      97 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12038-015-9554-0 schema:about N1cf91342503e4ff19f79ce07d52c840d
2 N47748045663d48959346cea29da294ad
3 N6eb789033794458a80ab5642800e2f9f
4 N8c438dac88aa471c91c3d487c5f77d8c
5 N9517f093b16b489990885e539caa8a63
6 N9e7b8f16a7054206b4111645151167d9
7 Nba55fd46fded41debea6f323a59951d6
8 Nc2e27a9de24543f5b0fe62bd42f22526
9 Nc47c7ebaae004ac08b8df1cd8094c2c2
10 Nc6ba5fd09d8a419aac6db34d2b8b78c5
11 Nf560ee2b971a42a4b567f451df880c47
12 Nfab45af6bf20440b87a5c91c131b5eac
13 Nff4363c5e3514645bc072cfd37d53239
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Ne080c4dc74ce4779a2895d058210bd43
17 schema:citation sg:pub.10.1007/s11227-009-0299-0
18 sg:pub.10.1007/s12043-008-0170-5
19 sg:pub.10.1038/1354
20 sg:pub.10.1038/1412
21 sg:pub.10.1038/14901
22 sg:pub.10.1038/30918
23 sg:pub.10.1038/35054591
24 sg:pub.10.1038/35075138
25 sg:pub.10.1038/nchembio.603
26 sg:pub.10.1038/nphys1746
27 sg:pub.10.1134/s0006350906070128
28 sg:pub.10.1186/1472-6807-13-20
29 schema:datePublished 2015-09-29
30 schema:datePublishedReg 2015-09-29
31 schema:description The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core–periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers – having higher core order – with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core–periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/~sitabhra/proteinKcore/index.html.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N1b4dd7f058ac42e0b22ca6bb29de19f5
36 Nb3949109205e4c3a96aa519a0f8fd558
37 sg:journal.1092026
38 schema:keywords acid
39 acid constituents
40 active sites increases
41 amino acid constituents
42 amino acids
43 analysis
44 association
45 available web resources
46 cavity
47 center residues
48 classification
49 connection density
50 constituents
51 contact networks
52 core
53 core-periphery analysis
54 core-periphery organization
55 critical residues
56 density
57 functional importance
58 functional role
59 graph-theoretic tools
60 group
61 hierarchical classification
62 importance
63 increase
64 index
65 inner core
66 innermost core
67 insights
68 key functional role
69 ligand molecules
70 molecules
71 most proteins
72 mutations
73 native state
74 network
75 network core
76 novel insights
77 order
78 organization
79 periphery
80 pocket
81 probability
82 protein
83 protein contact networks
84 receptor sites
85 representation
86 representation of proteins
87 residues
88 resources
89 results
90 role
91 sensitivity analysis
92 sites
93 sites increases
94 specific groups
95 stability
96 state
97 structural pocket
98 structural stability
99 subsequent analysis
100 terms
101 theoretic tools
102 tool
103 web resources
104 schema:name Analysis of core–periphery organization in protein contact networks reveals groups of structurally and functionally critical residues
105 schema:pagination 683-699
106 schema:productId N87637e66fc0542aca9776f750a72f62f
107 Nb557993890194260b37d99ad3fc9685d
108 Nd921796bfb954bee90967f9517e144b9
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040662330
110 https://doi.org/10.1007/s12038-015-9554-0
111 schema:sdDatePublished 2022-05-10T10:13
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Nc65682e177344af381662ac85f1f202a
114 schema:url https://doi.org/10.1007/s12038-015-9554-0
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N1b4dd7f058ac42e0b22ca6bb29de19f5 schema:volumeNumber 40
119 rdf:type schema:PublicationVolume
120 N1cf91342503e4ff19f79ce07d52c840d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 N47748045663d48959346cea29da294ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Ligands
125 rdf:type schema:DefinedTerm
126 N6eb789033794458a80ab5642800e2f9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Mutation
128 rdf:type schema:DefinedTerm
129 N87637e66fc0542aca9776f750a72f62f schema:name dimensions_id
130 schema:value pub.1040662330
131 rdf:type schema:PropertyValue
132 N8c438dac88aa471c91c3d487c5f77d8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Receptors, Cell Surface
134 rdf:type schema:DefinedTerm
135 N9517f093b16b489990885e539caa8a63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Thermodynamics
137 rdf:type schema:DefinedTerm
138 N9e7b8f16a7054206b4111645151167d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Protein Interaction Mapping
140 rdf:type schema:DefinedTerm
141 Nb3949109205e4c3a96aa519a0f8fd558 schema:issueNumber 4
142 rdf:type schema:PublicationIssue
143 Nb557993890194260b37d99ad3fc9685d schema:name doi
144 schema:value 10.1007/s12038-015-9554-0
145 rdf:type schema:PropertyValue
146 Nba55fd46fded41debea6f323a59951d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Amino Acids
148 rdf:type schema:DefinedTerm
149 Nc2e27a9de24543f5b0fe62bd42f22526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Databases, Protein
151 rdf:type schema:DefinedTerm
152 Nc47c7ebaae004ac08b8df1cd8094c2c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Protein Conformation
154 rdf:type schema:DefinedTerm
155 Nc65682e177344af381662ac85f1f202a schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 Nc6ba5fd09d8a419aac6db34d2b8b78c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Protein Binding
159 rdf:type schema:DefinedTerm
160 Nd921796bfb954bee90967f9517e144b9 schema:name pubmed_id
161 schema:value 26564971
162 rdf:type schema:PropertyValue
163 Ne080c4dc74ce4779a2895d058210bd43 rdf:first sg:person.01363645127.47
164 rdf:rest Nf8eb06381b8b464d8feda374a4219d8e
165 Nf560ee2b971a42a4b567f451df880c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Computational Biology
167 rdf:type schema:DefinedTerm
168 Nf8eb06381b8b464d8feda374a4219d8e rdf:first sg:person.01106420703.25
169 rdf:rest rdf:nil
170 Nfab45af6bf20440b87a5c91c131b5eac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Binding Sites
172 rdf:type schema:DefinedTerm
173 Nff4363c5e3514645bc072cfd37d53239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Structure-Activity Relationship
175 rdf:type schema:DefinedTerm
176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
177 schema:name Biological Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biochemistry and Cell Biology
181 rdf:type schema:DefinedTerm
182 sg:journal.1092026 schema:issn 0250-5991
183 0973-7138
184 schema:name Journal of Biosciences
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
188 schema:familyName Sinha
189 schema:givenName Sitabhra
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
191 rdf:type schema:Person
192 sg:person.01363645127.47 schema:affiliation grid-institutes:grid.412813.d
193 schema:familyName Isaac
194 schema:givenName Arnold Emerson
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363645127.47
196 rdf:type schema:Person
197 sg:pub.10.1007/s11227-009-0299-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039873146
198 https://doi.org/10.1007/s11227-009-0299-0
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s12043-008-0170-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029858734
201 https://doi.org/10.1007/s12043-008-0170-5
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/1354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015182501
204 https://doi.org/10.1038/1354
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/1412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028329379
207 https://doi.org/10.1038/1412
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/14901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027631794
210 https://doi.org/10.1038/14901
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
213 https://doi.org/10.1038/30918
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/35054591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021493065
216 https://doi.org/10.1038/35054591
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/35075138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990326
219 https://doi.org/10.1038/35075138
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nchembio.603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030191642
222 https://doi.org/10.1038/nchembio.603
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
225 https://doi.org/10.1038/nphys1746
226 rdf:type schema:CreativeWork
227 sg:pub.10.1134/s0006350906070128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046560084
228 https://doi.org/10.1134/s0006350906070128
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1472-6807-13-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009044166
231 https://doi.org/10.1186/1472-6807-13-20
232 rdf:type schema:CreativeWork
233 grid-institutes:grid.412813.d schema:alternateName Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore, India
234 schema:name Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore, India
235 rdf:type schema:Organization
236 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, Chennai, India
237 schema:name The Institute of Mathematical Sciences, Chennai, India
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...