Parsing regulatory DNA: General tasks, techniques, and the PhyloGibbs approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-08

AUTHORS

Rahul Siddharthan

ABSTRACT

In this review, we discuss the general problem of understanding transcriptional regulation from DNA sequence and prior information. The main tasks we discuss are predicting local regions of DNA, cis-regulatory modules (CRMs) that contain binding sites for transcription factors (TFs), and predicting individual binding sites. We review various existing methods, and then describe the approach taken by PhyloGibbs, a recent motif-finding algorithm that we developed to predict TF binding sites, and PhyloGibbs-MP, an extension to PhyloGibbs that tackles other tasks in regulatory genomics, particularly prediction of CRMs. More... »

PAGES

863-870

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12038-007-0086-0

DOI

http://dx.doi.org/10.1007/s12038-007-0086-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008642435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17914228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Elements, Transcriptional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, 600 113, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 600 113, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddharthan", 
        "givenName": "Rahul", 
        "id": "sg:person.0614124227.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614124227.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695015", 
          "https://doi.org/10.1038/nature04979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230952", 
          "https://doi.org/10.1007/bf01206331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014283709", 
          "https://doi.org/10.1186/1471-2105-7-143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-514-5_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017366539", 
          "https://doi.org/10.1007/978-1-59745-514-5_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006972186", 
          "https://doi.org/10.1038/nrg1500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/441398a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000121327", 
          "https://doi.org/10.1038/441398a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027517871", 
          "https://doi.org/10.1186/1471-2105-5-129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-9-r61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006276884", 
          "https://doi.org/10.1186/gb-2004-5-9-r61"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0054337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029623772", 
          "https://doi.org/10.1007/bfb0054337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432182", 
          "https://doi.org/10.1186/1471-2105-4-57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001799892", 
          "https://doi.org/10.1038/nrg1379"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08", 
    "datePublishedReg": "2007-08-01", 
    "description": "In this review, we discuss the general problem of understanding transcriptional regulation from DNA sequence and prior information. The main tasks we discuss are predicting local regions of DNA, cis-regulatory modules (CRMs) that contain binding sites for transcription factors (TFs), and predicting individual binding sites. We review various existing methods, and then describe the approach taken by PhyloGibbs, a recent motif-finding algorithm that we developed to predict TF binding sites, and PhyloGibbs-MP, an extension to PhyloGibbs that tackles other tasks in regulatory genomics, particularly prediction of CRMs.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12038-007-0086-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092026", 
        "issn": [
          "0253-410X", 
          "0973-7138"
        ], 
        "name": "Journal of Biosciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "cis-regulatory modules", 
      "transcription factors", 
      "regulatory genomics", 
      "regulatory DNA", 
      "transcriptional regulation", 
      "DNA sequences", 
      "motif-finding algorithms", 
      "DNA", 
      "PhyloGibbs", 
      "genomics", 
      "sites", 
      "regulation", 
      "sequence", 
      "region", 
      "factors", 
      "review", 
      "approach", 
      "module", 
      "information", 
      "prediction", 
      "local regions", 
      "extension", 
      "general problem", 
      "method", 
      "technique", 
      "prior information", 
      "general tasks", 
      "main task", 
      "problem", 
      "task", 
      "algorithm", 
      "recent motif-finding algorithm", 
      "PhyloGibbs-MP", 
      "prediction of CRMs", 
      "PhyloGibbs approach"
    ], 
    "name": "Parsing regulatory DNA: General tasks, techniques, and the PhyloGibbs approach", 
    "pagination": "863-870", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008642435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12038-007-0086-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17914228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12038-007-0086-0", 
      "https://app.dimensions.ai/details/publication/pub.1008642435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_438.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12038-007-0086-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12038-007-0086-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12038-007-0086-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12038-007-0086-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12038-007-0086-0'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      83 URIs      64 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12038-007-0086-0 schema:about N084794c300e84def852350d1ef777869
2 N11d0621b51ff4ad4b5b0e553bb65f26e
3 N13b29fa0174e4a0c9af0e4bca2ae8c59
4 N2cc44780de7141b2b57c79dbac0ef555
5 N2fa38397779f4edfb7d3960d464c484c
6 N435584c6336e4c79b0ee620b6c08acfb
7 N8b4f7d84bed840fda44985ae384e3032
8 Nccf33c74b1894420abeb50d56be0a6be
9 Neded8986b7564f9eb4a033a0eae4b09c
10 Nf3e076b90a30460889f1e5d34722d7d8
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N8beb739349164dd6a4bf24544661e03b
14 schema:citation sg:pub.10.1007/978-1-59745-514-5_24
15 sg:pub.10.1007/bf01206331
16 sg:pub.10.1007/bfb0054337
17 sg:pub.10.1038/441398a
18 sg:pub.10.1038/nature04979
19 sg:pub.10.1038/nrg1379
20 sg:pub.10.1038/nrg1500
21 sg:pub.10.1186/1471-2105-4-57
22 sg:pub.10.1186/1471-2105-5-129
23 sg:pub.10.1186/1471-2105-7-143
24 sg:pub.10.1186/gb-2004-5-9-r61
25 schema:datePublished 2007-08
26 schema:datePublishedReg 2007-08-01
27 schema:description In this review, we discuss the general problem of understanding transcriptional regulation from DNA sequence and prior information. The main tasks we discuss are predicting local regions of DNA, cis-regulatory modules (CRMs) that contain binding sites for transcription factors (TFs), and predicting individual binding sites. We review various existing methods, and then describe the approach taken by PhyloGibbs, a recent motif-finding algorithm that we developed to predict TF binding sites, and PhyloGibbs-MP, an extension to PhyloGibbs that tackles other tasks in regulatory genomics, particularly prediction of CRMs.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nab734c95cf5446c5b315a543ba0b7e59
32 Ne3dc62aed9374d86982184fa00f288e3
33 sg:journal.1092026
34 schema:keywords DNA
35 DNA sequences
36 PhyloGibbs
37 PhyloGibbs approach
38 PhyloGibbs-MP
39 algorithm
40 approach
41 cis-regulatory modules
42 extension
43 factors
44 general problem
45 general tasks
46 genomics
47 information
48 local regions
49 main task
50 method
51 module
52 motif-finding algorithms
53 prediction
54 prediction of CRMs
55 prior information
56 problem
57 recent motif-finding algorithm
58 region
59 regulation
60 regulatory DNA
61 regulatory genomics
62 review
63 sequence
64 sites
65 task
66 technique
67 transcription factors
68 transcriptional regulation
69 schema:name Parsing regulatory DNA: General tasks, techniques, and the PhyloGibbs approach
70 schema:pagination 863-870
71 schema:productId N00a5d60a739c48ad9dca1be13a0873c2
72 Nc168959b43694ec586fc4ec05ce7b1a1
73 Ne3965c71ae4e4bea8ee413621661ebed
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008642435
75 https://doi.org/10.1007/s12038-007-0086-0
76 schema:sdDatePublished 2021-11-01T18:10
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N0216500d50ee40a594142c0909335608
79 schema:url https://doi.org/10.1007/s12038-007-0086-0
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N00a5d60a739c48ad9dca1be13a0873c2 schema:name pubmed_id
84 schema:value 17914228
85 rdf:type schema:PropertyValue
86 N0216500d50ee40a594142c0909335608 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N084794c300e84def852350d1ef777869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Regulatory Elements, Transcriptional
90 rdf:type schema:DefinedTerm
91 N11d0621b51ff4ad4b5b0e553bb65f26e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name DNA
93 rdf:type schema:DefinedTerm
94 N13b29fa0174e4a0c9af0e4bca2ae8c59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Software
96 rdf:type schema:DefinedTerm
97 N2cc44780de7141b2b57c79dbac0ef555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Animals
99 rdf:type schema:DefinedTerm
100 N2fa38397779f4edfb7d3960d464c484c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Computational Biology
102 rdf:type schema:DefinedTerm
103 N435584c6336e4c79b0ee620b6c08acfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Molecular Sequence Data
105 rdf:type schema:DefinedTerm
106 N8b4f7d84bed840fda44985ae384e3032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Base Sequence
108 rdf:type schema:DefinedTerm
109 N8beb739349164dd6a4bf24544661e03b rdf:first sg:person.0614124227.85
110 rdf:rest rdf:nil
111 Nab734c95cf5446c5b315a543ba0b7e59 schema:issueNumber Suppl 1
112 rdf:type schema:PublicationIssue
113 Nc168959b43694ec586fc4ec05ce7b1a1 schema:name doi
114 schema:value 10.1007/s12038-007-0086-0
115 rdf:type schema:PropertyValue
116 Nccf33c74b1894420abeb50d56be0a6be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Regulatory Sequences, Nucleic Acid
118 rdf:type schema:DefinedTerm
119 Ne3965c71ae4e4bea8ee413621661ebed schema:name dimensions_id
120 schema:value pub.1008642435
121 rdf:type schema:PropertyValue
122 Ne3dc62aed9374d86982184fa00f288e3 schema:volumeNumber 32
123 rdf:type schema:PublicationVolume
124 Neded8986b7564f9eb4a033a0eae4b09c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 Nf3e076b90a30460889f1e5d34722d7d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Sequence Analysis, DNA
129 rdf:type schema:DefinedTerm
130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biological Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
134 schema:name Genetics
135 rdf:type schema:DefinedTerm
136 sg:journal.1092026 schema:issn 0253-410X
137 0973-7138
138 schema:name Journal of Biosciences
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.0614124227.85 schema:affiliation grid-institutes:grid.462414.1
142 schema:familyName Siddharthan
143 schema:givenName Rahul
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614124227.85
145 rdf:type schema:Person
146 sg:pub.10.1007/978-1-59745-514-5_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017366539
147 https://doi.org/10.1007/978-1-59745-514-5_24
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf01206331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230952
150 https://doi.org/10.1007/bf01206331
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bfb0054337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029623772
153 https://doi.org/10.1007/bfb0054337
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/441398a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000121327
156 https://doi.org/10.1038/441398a
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature04979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695015
159 https://doi.org/10.1038/nature04979
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nrg1379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001799892
162 https://doi.org/10.1038/nrg1379
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nrg1500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006972186
165 https://doi.org/10.1038/nrg1500
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2105-4-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432182
168 https://doi.org/10.1186/1471-2105-4-57
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2105-5-129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027517871
171 https://doi.org/10.1186/1471-2105-5-129
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-7-143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014283709
174 https://doi.org/10.1186/1471-2105-7-143
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/gb-2004-5-9-r61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006276884
177 https://doi.org/10.1186/gb-2004-5-9-r61
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, 600 113, Chennai, India
180 schema:name The Institute of Mathematical Sciences, 600 113, Chennai, India
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...