Nature of Coherent Radio Emission from Pulsars View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-12

AUTHORS

Dipanjan Mitra

ABSTRACT

The pulsar radio emission originates from regions below 10% of the light cylinder radius. This requires a mechanism where coherent emission is excited in relativistic pair plasma with frequency νcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mathrm{cr}}$$\end{document} which is below the plasma frequency ν∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\circ }$$\end{document} i.e. νcr<ν∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mathrm{cr}} < \nu _{\circ }$$\end{document}. A possible model for the emission mechanism is charged bunches (charged solitons) moving relativistically along the curved open dipolar magnetic field lines capable of exciting coherent curvature radio emission. In this article, we review the results from high quality observations in conjunction with theoretical models to unravel the nature of coherent curvature radio emission in pulsars. More... »

PAGES

52

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12036-017-9457-6

DOI

http://dx.doi.org/10.1007/s12036-017-9457-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091599730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Janusz Gil Institute of Astronomy, University of Zielona G\u00f3ra, ul. Szafrana 2, 65-516, Zielona G\u00f3ra, Poland", 
          "id": "http://www.grid.ac/institutes/grid.28048.36", 
          "name": [
            "National Center for Radio Astrophysics, Tata Institute of Fundamental Research, 411 007, Pune, India", 
            "Physics Department, University of Vermont, 05405, Burlington, VT, USA", 
            "Janusz Gil Institute of Astronomy, University of Zielona G\u00f3ra, ul. Szafrana 2, 65-516, Zielona G\u00f3ra, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitra", 
        "givenName": "Dipanjan", 
        "id": "sg:person.010007305020.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007305020.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/220231a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049317701", 
          "https://doi.org/10.1038/220231a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17251-9_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037397633", 
          "https://doi.org/10.1007/978-3-642-17251-9_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/23650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047311174", 
          "https://doi.org/10.1038/23650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02714830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013199932", 
          "https://doi.org/10.1007/bf02714830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/227465a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011786274", 
          "https://doi.org/10.1038/227465a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01005694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019948098", 
          "https://doi.org/10.1007/bf01005694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00641643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040092008", 
          "https://doi.org/10.1007/bf00641643"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-12", 
    "datePublishedReg": "2017-09-12", 
    "description": "The pulsar radio emission originates from regions below 10% of the light cylinder radius. This requires a mechanism where coherent emission is excited in relativistic pair plasma with frequency \u03bdcr\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\nu _{\\mathrm{cr}}$$\\end{document} which is below the plasma frequency \u03bd\u2218\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\nu _{\\circ }$$\\end{document} i.e. \u03bdcr<\u03bd\u2218\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\nu _{\\mathrm{cr}} < \\nu _{\\circ }$$\\end{document}. A possible model for the emission mechanism is charged bunches (charged solitons) moving relativistically along the curved open dipolar magnetic field lines capable of exciting coherent curvature radio emission. In this article, we review the results from high quality observations in conjunction with theoretical models to unravel the nature of coherent curvature radio emission in pulsars.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12036-017-9457-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136049", 
        "issn": [
          "0250-6335", 
          "0973-7758"
        ], 
        "name": "Journal of Astrophysics and Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "radio emission", 
      "dipolar magnetic field lines", 
      "coherent radio emission", 
      "relativistic pair plasma", 
      "light cylinder radius", 
      "pulsar radio emission", 
      "magnetic field lines", 
      "pair plasma", 
      "plasma frequency", 
      "coherent emission", 
      "high-quality observations", 
      "field lines", 
      "emission mechanism", 
      "pulsars", 
      "emission", 
      "cylinder radius", 
      "theoretical model", 
      "quality observations", 
      "possible models", 
      "bunch", 
      "plasma", 
      "radius", 
      "frequency", 
      "model", 
      "nature", 
      "region", 
      "lines", 
      "conjunction", 
      "mechanism", 
      "observations", 
      "results", 
      "article"
    ], 
    "name": "Nature of Coherent Radio Emission from Pulsars", 
    "pagination": "52", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091599730"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12036-017-9457-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12036-017-9457-6", 
      "https://app.dimensions.ai/details/publication/pub.1091599730"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_728.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12036-017-9457-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12036-017-9457-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12036-017-9457-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12036-017-9457-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12036-017-9457-6'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      62 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12036-017-9457-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N548290624cd74d028912191c5c0f8dd1
4 schema:citation sg:pub.10.1007/978-3-642-17251-9_11
5 sg:pub.10.1007/bf00641643
6 sg:pub.10.1007/bf01005694
7 sg:pub.10.1007/bf02714830
8 sg:pub.10.1038/220231a0
9 sg:pub.10.1038/227465a0
10 sg:pub.10.1038/23650
11 schema:datePublished 2017-09-12
12 schema:datePublishedReg 2017-09-12
13 schema:description The pulsar radio emission originates from regions below 10% of the light cylinder radius. This requires a mechanism where coherent emission is excited in relativistic pair plasma with frequency νcr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mathrm{cr}}$$\end{document} which is below the plasma frequency ν∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\circ }$$\end{document} i.e. νcr<ν∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mathrm{cr}} < \nu _{\circ }$$\end{document}. A possible model for the emission mechanism is charged bunches (charged solitons) moving relativistically along the curved open dipolar magnetic field lines capable of exciting coherent curvature radio emission. In this article, we review the results from high quality observations in conjunction with theoretical models to unravel the nature of coherent curvature radio emission in pulsars.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N6bef6f78f46948d990fbd59d1f32b11c
17 Ne085c7117da142c5b7476d2aaf227ec2
18 sg:journal.1136049
19 schema:keywords article
20 bunch
21 coherent emission
22 coherent radio emission
23 conjunction
24 cylinder radius
25 dipolar magnetic field lines
26 emission
27 emission mechanism
28 field lines
29 frequency
30 high-quality observations
31 light cylinder radius
32 lines
33 magnetic field lines
34 mechanism
35 model
36 nature
37 observations
38 pair plasma
39 plasma
40 plasma frequency
41 possible models
42 pulsar radio emission
43 pulsars
44 quality observations
45 radio emission
46 radius
47 region
48 relativistic pair plasma
49 results
50 theoretical model
51 schema:name Nature of Coherent Radio Emission from Pulsars
52 schema:pagination 52
53 schema:productId N6041834f249a421dbc4018e0fde4903d
54 Nb7d71eb9db324677be00302a65590a15
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091599730
56 https://doi.org/10.1007/s12036-017-9457-6
57 schema:sdDatePublished 2022-11-24T21:00
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N420778e6aa2c49128e278cec6b513bd3
60 schema:url https://doi.org/10.1007/s12036-017-9457-6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N420778e6aa2c49128e278cec6b513bd3 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N548290624cd74d028912191c5c0f8dd1 rdf:first sg:person.010007305020.07
67 rdf:rest rdf:nil
68 N6041834f249a421dbc4018e0fde4903d schema:name doi
69 schema:value 10.1007/s12036-017-9457-6
70 rdf:type schema:PropertyValue
71 N6bef6f78f46948d990fbd59d1f32b11c schema:volumeNumber 38
72 rdf:type schema:PublicationVolume
73 Nb7d71eb9db324677be00302a65590a15 schema:name dimensions_id
74 schema:value pub.1091599730
75 rdf:type schema:PropertyValue
76 Ne085c7117da142c5b7476d2aaf227ec2 schema:issueNumber 3
77 rdf:type schema:PublicationIssue
78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
82 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
83 rdf:type schema:DefinedTerm
84 sg:journal.1136049 schema:issn 0250-6335
85 0973-7758
86 schema:name Journal of Astrophysics and Astronomy
87 schema:publisher Springer Nature
88 rdf:type schema:Periodical
89 sg:person.010007305020.07 schema:affiliation grid-institutes:grid.28048.36
90 schema:familyName Mitra
91 schema:givenName Dipanjan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007305020.07
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-642-17251-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037397633
95 https://doi.org/10.1007/978-3-642-17251-9_11
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00641643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092008
98 https://doi.org/10.1007/bf00641643
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01005694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019948098
101 https://doi.org/10.1007/bf01005694
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02714830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013199932
104 https://doi.org/10.1007/bf02714830
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/220231a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049317701
107 https://doi.org/10.1038/220231a0
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/227465a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011786274
110 https://doi.org/10.1038/227465a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/23650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311174
113 https://doi.org/10.1038/23650
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.28048.36 schema:alternateName Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65-516, Zielona Góra, Poland
116 schema:name Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Szafrana 2, 65-516, Zielona Góra, Poland
117 National Center for Radio Astrophysics, Tata Institute of Fundamental Research, 411 007, Pune, India
118 Physics Department, University of Vermont, 05405, Burlington, VT, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...