Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-16

AUTHORS

Claudia Consales, Claudia Cirotti, Giuseppe Filomeni, Martina Panatta, Alessio Butera, Caterina Merla, Vanni Lopresto, Rosanna Pinto, Carmela Marino, Barbara Benassi

ABSTRACT

The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1 mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the α-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration. More... »

PAGES

5698-5714

References to SciGraph publications

  • 2013-09-13. Epigenetic Landscape of Parkinson’s Disease: Emerging Role in Disease Mechanisms and Therapeutic Modalities in NEUROTHERAPEUTICS
  • 2017-01-17. NADPH oxidase in brain injury and neurodegenerative disorders in MOLECULAR NEURODEGENERATION
  • 2014-02-16. Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields in MOLECULAR NEUROBIOLOGY
  • 2008-05-26. The MYCN oncogene is a direct target of miR-34a in ONCOGENE
  • 2014-05-21. P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy in MOLECULAR CANCER
  • 2015-07-30. Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson’s Disease Toxin MPP+ in MOLECULAR NEUROBIOLOGY
  • 2017-01-13. Regulation of miR-34 Family in Neuronal Development in MOLECULAR NEUROBIOLOGY
  • 2015-08-13. How Does p73 Cause Neuronal Defects? in MOLECULAR NEUROBIOLOGY
  • 2014-11-12. The role of the LRRK2 gene in Parkinsonism in MOLECULAR NEURODEGENERATION
  • 2006-04. Genetics of Parkinson disease: paradigm shifts and future prospects in NATURE REVIEWS GENETICS
  • 2007-06-06. A microRNA component of the p53 tumour suppressor network in NATURE
  • 2014-06-29. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases in MOLECULAR NEUROBIOLOGY
  • 2004-03. Neurodegenerative diseases and oxidative stress in NATURE REVIEWS DRUG DISCOVERY
  • 2016-03-31. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus in BMC GENOMICS
  • 2012-02-15. The microRNA miR-34 modulates aging and neurodegeneration in Drosophila in NATURE
  • 2007-06-09. A case-control study of occupational magnetic field exposure and Alzheimer's disease: results from the California Alzheimer's Disease Diagnosis and Treatment Centers in BMC NEUROLOGY
  • 2003-01. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists in NEUROTOXICITY RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12035-017-0791-0

    DOI

    http://dx.doi.org/10.1007/s12035-017-0791-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092245777

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29039021


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cerebral Cortex", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Fields", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitochondria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidative Stress", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Suppressor Protein p53", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "alpha-Synuclein", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Consales", 
            "givenName": "Claudia", 
            "id": "sg:person.01066363731.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066363731.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.6530.0", 
              "name": [
                "Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cirotti", 
            "givenName": "Claudia", 
            "id": "sg:person.01176261052.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176261052.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.417390.8", 
              "name": [
                "Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy", 
                "Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Filomeni", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01000133353.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000133353.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panatta", 
            "givenName": "Martina", 
            "id": "sg:person.012737337263.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737337263.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Butera", 
            "givenName": "Alessio", 
            "id": "sg:person.013534717663.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534717663.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 94805, Villejuif, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
                "Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Universit\u00e9 Paris-Saclay, 94805, Villejuif, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Merla", 
            "givenName": "Caterina", 
            "id": "sg:person.013537734451.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537734451.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopresto", 
            "givenName": "Vanni", 
            "id": "sg:person.01260424562.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260424562.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinto", 
            "givenName": "Rosanna", 
            "id": "sg:person.0731532134.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731532134.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marino", 
            "givenName": "Carmela", 
            "id": "sg:person.0715560101.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715560101.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benassi", 
            "givenName": "Barbara", 
            "id": "sg:person.0770054753.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770054753.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12864-016-2581-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047870739", 
              "https://doi.org/10.1186/s12864-016-2581-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-015-9354-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046463914", 
              "https://doi.org/10.1007/s12035-015-9354-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03033178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034753463", 
              "https://doi.org/10.1007/bf03033178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031665022", 
              "https://doi.org/10.1038/onc.2008.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019066888", 
              "https://doi.org/10.1038/nature05939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13311-013-0211-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008459934", 
              "https://doi.org/10.1007/s13311-013-0211-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1750-1326-9-47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002984337", 
              "https://doi.org/10.1186/1750-1326-9-47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2377-7-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003353322", 
              "https://doi.org/10.1186/1471-2377-7-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048971516", 
              "https://doi.org/10.1038/nrg1831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-016-0359-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047703504", 
              "https://doi.org/10.1007/s12035-016-0359-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003102113", 
              "https://doi.org/10.1038/nrd1330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-014-8650-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025607350", 
              "https://doi.org/10.1007/s12035-014-8650-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-014-8803-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020811733", 
              "https://doi.org/10.1007/s12035-014-8803-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-4598-13-115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032808776", 
              "https://doi.org/10.1186/1476-4598-13-115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13024-017-0150-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007926439", 
              "https://doi.org/10.1186/s13024-017-0150-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000826831", 
              "https://doi.org/10.1038/nature10810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-015-9381-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042344409", 
              "https://doi.org/10.1007/s12035-015-9381-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10-16", 
        "datePublishedReg": "2017-10-16", 
        "description": "The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1\u00a0mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the \u03b1-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12035-017-0791-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1098844", 
            "issn": [
              "0893-7648", 
              "1559-1182"
            ], 
            "name": "Molecular Neurobiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "ELF-MFs", 
          "gene expression", 
          "ELF-MF", 
          "epigenetic modulation", 
          "CpG island mapping", 
          "oxidative stress", 
          "miR-34b/c expression", 
          "mouse primary cortical neurons", 
          "underlying molecular mechanisms", 
          "SH-SY5Y human neuroblastoma cells", 
          "ELF-MF exposure", 
          "neuronal cell response", 
          "epigenetic control", 
          "primary cortical neurons", 
          "reactive oxygen species (ROS) production", 
          "mitochondrial oxidative stress", 
          "redox homeostasis", 
          "miR-34b/c promoter", 
          "human neuroblastoma cells", 
          "oxygen species (ROS) production", 
          "molecular mechanisms", 
          "silico analysis", 
          "miR-34b/c", 
          "neuronal degeneration", 
          "cortical neurons", 
          "neuronal cells", 
          "cell responses", 
          "early reduction", 
          "miR-34 targets", 
          "expression levels", 
          "species production", 
          "key event", 
          "neurodegenerative diseases", 
          "neuroblastoma cells", 
          "expression", 
          "data highlight", 
          "degeneration", 
          "neurons", 
          "low-frequency magnetic fields", 
          "cells", 
          "exposure", 
          "transcription", 
          "detrimental effects", 
          "miRNAs", 
          "promoter", 
          "mitochondria", 
          "modulation", 
          "stress", 
          "homeostasis", 
          "disease", 
          "miR-34c", 
          "miR-34b", 
          "p53", 
          "synuclein", 
          "cysteine", 
          "risk", 
          "control", 
          "targeting", 
          "glutathione", 
          "target", 
          "response", 
          "incubation", 
          "acetyl", 
          "mechanism", 
          "production", 
          "role", 
          "levels", 
          "mapping", 
          "contrast", 
          "reduction", 
          "events", 
          "effect", 
          "light", 
          "potential", 
          "highlights", 
          "analysis", 
          "field", 
          "magnetic field", 
          "miRs-34", 
          "common pri-miR-34", 
          "pri-miR-34", 
          "island mapping", 
          "c promoter", 
          "c expression", 
          "ELF-MF-induced oxidative stress", 
          "miRs-34 control reactive oxygen species production", 
          "control reactive oxygen species production", 
          "direct miR-34 targeting", 
          "miR-34 targeting", 
          "Fifty-Hertz Magnetic Field"
        ], 
        "name": "Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells", 
        "pagination": "5698-5714", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092245777"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12035-017-0791-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29039021"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12035-017-0791-0", 
          "https://app.dimensions.ai/details/publication/pub.1092245777"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_752.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12035-017-0791-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12035-017-0791-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12035-017-0791-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12035-017-0791-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12035-017-0791-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    370 TRIPLES      22 PREDICATES      152 URIs      127 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12035-017-0791-0 schema:about N09d08740af9a43939722474683d5e4d9
    2 N0bc83e021c1e44e9a6d8a35c79f94ca1
    3 N0c2acd822b0b4f64b49421e8a8811328
    4 N0ee2f7fd23c04d90a210a4473737c554
    5 N1059a51919854340a127141bdd736a7a
    6 N10b2d8905b0f4ed3a453973c390dd01d
    7 N14a0b3a30a804abd82d0699fdf7bef08
    8 N310f27cf60ad41afbddb813feccb2cfa
    9 N3ddb81fe4e9d4fc38417a58acee7c658
    10 N65a5c64e3c554f7abd457ac66615fd29
    11 N794c73d437154dedaa52a74dc62aa2ec
    12 N871f002c939141c7a5600affeaaba60a
    13 Ncddf377a7b7a418ab7ad71a6a917dfd4
    14 Nd937e7ece4554a7899dd6ecffcb72b4d
    15 Nde91cb6c572346b8bd665d9a5473d849
    16 Neaea023d93c944e8bd902998963d85f0
    17 Nf30e2df30a1943f2b8bab51a7e9abdad
    18 Nf443ffd391ad458c8b6966a2ae66e8f7
    19 Nff70b4402deb483ea1daca866068526b
    20 anzsrc-for:11
    21 anzsrc-for:1109
    22 schema:author Nabcb8dc309424af09145cc3c8c0a9530
    23 schema:citation sg:pub.10.1007/bf03033178
    24 sg:pub.10.1007/s12035-014-8650-8
    25 sg:pub.10.1007/s12035-014-8803-9
    26 sg:pub.10.1007/s12035-015-9354-4
    27 sg:pub.10.1007/s12035-015-9381-1
    28 sg:pub.10.1007/s12035-016-0359-4
    29 sg:pub.10.1007/s13311-013-0211-8
    30 sg:pub.10.1038/nature05939
    31 sg:pub.10.1038/nature10810
    32 sg:pub.10.1038/nrd1330
    33 sg:pub.10.1038/nrg1831
    34 sg:pub.10.1038/onc.2008.154
    35 sg:pub.10.1186/1471-2377-7-13
    36 sg:pub.10.1186/1476-4598-13-115
    37 sg:pub.10.1186/1750-1326-9-47
    38 sg:pub.10.1186/s12864-016-2581-x
    39 sg:pub.10.1186/s13024-017-0150-7
    40 schema:datePublished 2017-10-16
    41 schema:datePublishedReg 2017-10-16
    42 schema:description The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1 mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the α-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf Nbaf39a58f15a432db5a5821a4f3127df
    47 Nf5b6fdf54e2b45b9ab88f7b8bd937b52
    48 sg:journal.1098844
    49 schema:keywords CpG island mapping
    50 ELF-MF
    51 ELF-MF exposure
    52 ELF-MF-induced oxidative stress
    53 ELF-MFs
    54 Fifty-Hertz Magnetic Field
    55 SH-SY5Y human neuroblastoma cells
    56 acetyl
    57 analysis
    58 c expression
    59 c promoter
    60 cell responses
    61 cells
    62 common pri-miR-34
    63 contrast
    64 control
    65 control reactive oxygen species production
    66 cortical neurons
    67 cysteine
    68 data highlight
    69 degeneration
    70 detrimental effects
    71 direct miR-34 targeting
    72 disease
    73 early reduction
    74 effect
    75 epigenetic control
    76 epigenetic modulation
    77 events
    78 exposure
    79 expression
    80 expression levels
    81 field
    82 gene expression
    83 glutathione
    84 highlights
    85 homeostasis
    86 human neuroblastoma cells
    87 incubation
    88 island mapping
    89 key event
    90 levels
    91 light
    92 low-frequency magnetic fields
    93 magnetic field
    94 mapping
    95 mechanism
    96 miR-34 targeting
    97 miR-34 targets
    98 miR-34b
    99 miR-34b/c
    100 miR-34b/c expression
    101 miR-34b/c promoter
    102 miR-34c
    103 miRNAs
    104 miRs-34
    105 miRs-34 control reactive oxygen species production
    106 mitochondria
    107 mitochondrial oxidative stress
    108 modulation
    109 molecular mechanisms
    110 mouse primary cortical neurons
    111 neuroblastoma cells
    112 neurodegenerative diseases
    113 neuronal cell response
    114 neuronal cells
    115 neuronal degeneration
    116 neurons
    117 oxidative stress
    118 oxygen species (ROS) production
    119 p53
    120 potential
    121 pri-miR-34
    122 primary cortical neurons
    123 production
    124 promoter
    125 reactive oxygen species (ROS) production
    126 redox homeostasis
    127 reduction
    128 response
    129 risk
    130 role
    131 silico analysis
    132 species production
    133 stress
    134 synuclein
    135 target
    136 targeting
    137 transcription
    138 underlying molecular mechanisms
    139 schema:name Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells
    140 schema:pagination 5698-5714
    141 schema:productId N030f8ae32b0946bd9de03042ca7fe734
    142 N71ca370aaa7a48a1a03bd05a956334ee
    143 N85607cf4516744028453c99e07e03075
    144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092245777
    145 https://doi.org/10.1007/s12035-017-0791-0
    146 schema:sdDatePublished 2021-11-01T18:31
    147 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    148 schema:sdPublisher N9c7d4a6c42264547bcad9eceff16e01a
    149 schema:url https://doi.org/10.1007/s12035-017-0791-0
    150 sgo:license sg:explorer/license/
    151 sgo:sdDataset articles
    152 rdf:type schema:ScholarlyArticle
    153 N030f8ae32b0946bd9de03042ca7fe734 schema:name doi
    154 schema:value 10.1007/s12035-017-0791-0
    155 rdf:type schema:PropertyValue
    156 N08cc0dc4d7a743d1bac3c2184ccc2713 rdf:first sg:person.01000133353.16
    157 rdf:rest N8a702246689a4257a19f6eb27e9a4f65
    158 N09d08740af9a43939722474683d5e4d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Humans
    160 rdf:type schema:DefinedTerm
    161 N09eb377cb21848f98ce2353c94f1a5d6 rdf:first sg:person.013534717663.42
    162 rdf:rest Nce5d0f78799b4ab48c4ce12c7fbb29b1
    163 N0bc83e021c1e44e9a6d8a35c79f94ca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Epigenesis, Genetic
    165 rdf:type schema:DefinedTerm
    166 N0c2acd822b0b4f64b49421e8a8811328 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Mice, Inbred C57BL
    168 rdf:type schema:DefinedTerm
    169 N0ee2f7fd23c04d90a210a4473737c554 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name MicroRNAs
    171 rdf:type schema:DefinedTerm
    172 N1059a51919854340a127141bdd736a7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Mitochondria
    174 rdf:type schema:DefinedTerm
    175 N10b2d8905b0f4ed3a453973c390dd01d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Magnetic Fields
    177 rdf:type schema:DefinedTerm
    178 N14a0b3a30a804abd82d0699fdf7bef08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Neurons
    180 rdf:type schema:DefinedTerm
    181 N310f27cf60ad41afbddb813feccb2cfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Cell Line, Tumor
    183 rdf:type schema:DefinedTerm
    184 N3ddb81fe4e9d4fc38417a58acee7c658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Transcription, Genetic
    186 rdf:type schema:DefinedTerm
    187 N65a5c64e3c554f7abd457ac66615fd29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Tumor Suppressor Protein p53
    189 rdf:type schema:DefinedTerm
    190 N6f3ae659e38042d5ad492fa612ca48b4 rdf:first sg:person.0715560101.35
    191 rdf:rest N776beeb9fd39416aa10222b3897f6127
    192 N71ca370aaa7a48a1a03bd05a956334ee schema:name pubmed_id
    193 schema:value 29039021
    194 rdf:type schema:PropertyValue
    195 N776beeb9fd39416aa10222b3897f6127 rdf:first sg:person.0770054753.20
    196 rdf:rest rdf:nil
    197 N794c73d437154dedaa52a74dc62aa2ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name alpha-Synuclein
    199 rdf:type schema:DefinedTerm
    200 N822e40ba11f44e408ab60f5872dbe21b rdf:first sg:person.01260424562.53
    201 rdf:rest Naac1e43060c7456dbdf78b6afa48988b
    202 N85607cf4516744028453c99e07e03075 schema:name dimensions_id
    203 schema:value pub.1092245777
    204 rdf:type schema:PropertyValue
    205 N871f002c939141c7a5600affeaaba60a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Base Sequence
    207 rdf:type schema:DefinedTerm
    208 N8a702246689a4257a19f6eb27e9a4f65 rdf:first sg:person.012737337263.44
    209 rdf:rest N09eb377cb21848f98ce2353c94f1a5d6
    210 N9a1fc04695864b0cab71070b1c477fc2 rdf:first sg:person.01176261052.76
    211 rdf:rest N08cc0dc4d7a743d1bac3c2184ccc2713
    212 N9c7d4a6c42264547bcad9eceff16e01a schema:name Springer Nature - SN SciGraph project
    213 rdf:type schema:Organization
    214 Naac1e43060c7456dbdf78b6afa48988b rdf:first sg:person.0731532134.03
    215 rdf:rest N6f3ae659e38042d5ad492fa612ca48b4
    216 Nabcb8dc309424af09145cc3c8c0a9530 rdf:first sg:person.01066363731.16
    217 rdf:rest N9a1fc04695864b0cab71070b1c477fc2
    218 Nbaf39a58f15a432db5a5821a4f3127df schema:volumeNumber 55
    219 rdf:type schema:PublicationVolume
    220 Ncddf377a7b7a418ab7ad71a6a917dfd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Cerebral Cortex
    222 rdf:type schema:DefinedTerm
    223 Nce5d0f78799b4ab48c4ce12c7fbb29b1 rdf:first sg:person.013537734451.12
    224 rdf:rest N822e40ba11f44e408ab60f5872dbe21b
    225 Nd937e7ece4554a7899dd6ecffcb72b4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Animals
    227 rdf:type schema:DefinedTerm
    228 Nde91cb6c572346b8bd665d9a5473d849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name Oxidation-Reduction
    230 rdf:type schema:DefinedTerm
    231 Neaea023d93c944e8bd902998963d85f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Models, Biological
    233 rdf:type schema:DefinedTerm
    234 Nf30e2df30a1943f2b8bab51a7e9abdad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Oxidative Stress
    236 rdf:type schema:DefinedTerm
    237 Nf443ffd391ad458c8b6966a2ae66e8f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name DNA Methylation
    239 rdf:type schema:DefinedTerm
    240 Nf5b6fdf54e2b45b9ab88f7b8bd937b52 schema:issueNumber 7
    241 rdf:type schema:PublicationIssue
    242 Nff70b4402deb483ea1daca866068526b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    243 schema:name Promoter Regions, Genetic
    244 rdf:type schema:DefinedTerm
    245 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    246 schema:name Medical and Health Sciences
    247 rdf:type schema:DefinedTerm
    248 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    249 schema:name Neurosciences
    250 rdf:type schema:DefinedTerm
    251 sg:journal.1098844 schema:issn 0893-7648
    252 1559-1182
    253 schema:name Molecular Neurobiology
    254 schema:publisher Springer Nature
    255 rdf:type schema:Periodical
    256 sg:person.01000133353.16 schema:affiliation grid-institutes:grid.417390.8
    257 schema:familyName Filomeni
    258 schema:givenName Giuseppe
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000133353.16
    260 rdf:type schema:Person
    261 sg:person.01066363731.16 schema:affiliation grid-institutes:grid.5196.b
    262 schema:familyName Consales
    263 schema:givenName Claudia
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066363731.16
    265 rdf:type schema:Person
    266 sg:person.01176261052.76 schema:affiliation grid-institutes:grid.6530.0
    267 schema:familyName Cirotti
    268 schema:givenName Claudia
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176261052.76
    270 rdf:type schema:Person
    271 sg:person.01260424562.53 schema:affiliation grid-institutes:grid.5196.b
    272 schema:familyName Lopresto
    273 schema:givenName Vanni
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260424562.53
    275 rdf:type schema:Person
    276 sg:person.012737337263.44 schema:affiliation grid-institutes:grid.5196.b
    277 schema:familyName Panatta
    278 schema:givenName Martina
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737337263.44
    280 rdf:type schema:Person
    281 sg:person.013534717663.42 schema:affiliation grid-institutes:grid.5196.b
    282 schema:familyName Butera
    283 schema:givenName Alessio
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534717663.42
    285 rdf:type schema:Person
    286 sg:person.013537734451.12 schema:affiliation grid-institutes:None
    287 schema:familyName Merla
    288 schema:givenName Caterina
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537734451.12
    290 rdf:type schema:Person
    291 sg:person.0715560101.35 schema:affiliation grid-institutes:grid.5196.b
    292 schema:familyName Marino
    293 schema:givenName Carmela
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715560101.35
    295 rdf:type schema:Person
    296 sg:person.0731532134.03 schema:affiliation grid-institutes:grid.5196.b
    297 schema:familyName Pinto
    298 schema:givenName Rosanna
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731532134.03
    300 rdf:type schema:Person
    301 sg:person.0770054753.20 schema:affiliation grid-institutes:grid.5196.b
    302 schema:familyName Benassi
    303 schema:givenName Barbara
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770054753.20
    305 rdf:type schema:Person
    306 sg:pub.10.1007/bf03033178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753463
    307 https://doi.org/10.1007/bf03033178
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s12035-014-8650-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025607350
    310 https://doi.org/10.1007/s12035-014-8650-8
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s12035-014-8803-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020811733
    313 https://doi.org/10.1007/s12035-014-8803-9
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s12035-015-9354-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046463914
    316 https://doi.org/10.1007/s12035-015-9354-4
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s12035-015-9381-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042344409
    319 https://doi.org/10.1007/s12035-015-9381-1
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s12035-016-0359-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047703504
    322 https://doi.org/10.1007/s12035-016-0359-4
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s13311-013-0211-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008459934
    325 https://doi.org/10.1007/s13311-013-0211-8
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nature05939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019066888
    328 https://doi.org/10.1038/nature05939
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nature10810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000826831
    331 https://doi.org/10.1038/nature10810
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nrd1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003102113
    334 https://doi.org/10.1038/nrd1330
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/nrg1831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048971516
    337 https://doi.org/10.1038/nrg1831
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/onc.2008.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031665022
    340 https://doi.org/10.1038/onc.2008.154
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1471-2377-7-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003353322
    343 https://doi.org/10.1186/1471-2377-7-13
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/1476-4598-13-115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808776
    346 https://doi.org/10.1186/1476-4598-13-115
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/1750-1326-9-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002984337
    349 https://doi.org/10.1186/1750-1326-9-47
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1186/s12864-016-2581-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047870739
    352 https://doi.org/10.1186/s12864-016-2581-x
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1186/s13024-017-0150-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007926439
    355 https://doi.org/10.1186/s13024-017-0150-7
    356 rdf:type schema:CreativeWork
    357 grid-institutes:None schema:alternateName Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
    358 schema:name Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy
    359 Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
    360 rdf:type schema:Organization
    361 grid-institutes:grid.417390.8 schema:alternateName Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
    362 schema:name Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
    363 Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
    364 rdf:type schema:Organization
    365 grid-institutes:grid.5196.b schema:alternateName Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy
    366 schema:name Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy
    367 rdf:type schema:Organization
    368 grid-institutes:grid.6530.0 schema:alternateName Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
    369 schema:name Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
    370 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...