Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-27

AUTHORS

Arvind Sharma, T D Das

ABSTRACT

GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} is a suitable candidate for 1.06μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.06\,{\upmu }\hbox {m}$$\end{document} solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} with x/y=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x/y=0.58$$\end{document} can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}200 meV for GaAs0.937N0.023Bi0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{0.937}\hbox {N}_{0.023}\hbox {Bi}_{0.04}$$\end{document} alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW. More... »

PAGES

87

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5

DOI

http://dx.doi.org/10.1007/s12034-019-1793-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113043686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.419487.7", 
          "name": [
            "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Arvind", 
        "id": "sg:person.010657730607.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657730607.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.419487.7", 
          "name": [
            "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "T D", 
        "id": "sg:person.010707577443.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707577443.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-03880-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039478122", 
          "https://doi.org/10.1007/978-3-662-03880-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053175914", 
          "https://doi.org/10.1186/1556-276x-9-580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-008-9255-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030274212", 
          "https://doi.org/10.1007/s11082-008-9255-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "GaAs1-x-yNxBiy\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {GaAs}_{1-x-y}\\hbox {N}_{x}\\hbox {Bi}_{y}$$\\end{document} is a suitable candidate for 1.06\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1.06\\,{\\upmu }\\hbox {m}$$\\end{document} solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {GaAs}_{1-x-y}\\hbox {N}_{x}\\hbox {Bi}_{y}$$\\end{document} with x/y=0.58\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$x/y=0.58$$\\end{document} can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of \u223c\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim $$\\end{document}200 meV for GaAs0.937N0.023Bi0.04\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {GaAs}_{0.937}\\hbox {N}_{0.023}\\hbox {Bi}_{0.04}$$\\end{document} alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {GaAs}_{1-x-y}\\hbox {N}_{x}\\hbox {Bi}_{y}$$\\end{document} quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12034-019-1793-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136251", 
        "issn": [
          "0250-4707", 
          "0973-7669"
        ], 
        "name": "Bulletin of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "band structure", 
      "mathematical model", 
      "electronic band structure", 
      "impurity atoms", 
      "significant band gap reduction", 
      "generalized mode", 
      "kp Hamiltonian", 
      "KP model", 
      "lattice-matched condition", 
      "band gap reduction", 
      "high-efficiency solar cells", 
      "lattice constants", 
      "optical gain", 
      "solid-state lasers", 
      "optical properties", 
      "incorporation of Bi", 
      "atom substitution", 
      "gap reduction", 
      "Hamiltonian", 
      "solar cells", 
      "effect of strain", 
      "state lasers", 
      "energy levels", 
      "quantum", 
      "band offsets", 
      "model", 
      "GaAs", 
      "GaAs1", 
      "parameters", 
      "GaAs barrier", 
      "atoms", 
      "structure", 
      "Bi", 
      "QW", 
      "alloy", 
      "MeV", 
      "properties", 
      "suitable candidates", 
      "gain", 
      "constants", 
      "offset", 
      "mode", 
      "laser", 
      "incorporation", 
      "conditions", 
      "effect", 
      "variation", 
      "strains", 
      "concentration", 
      "reduction", 
      "barriers", 
      "candidates", 
      "addition", 
      "substitution", 
      "levels", 
      "cells", 
      "alloy GaAs1", 
      "GaAsNBi", 
      "Arsenic atom substitution", 
      "Bi impurity atoms", 
      "GaAsNBi QW", 
      "yNxBiy/GaAs"
    ], 
    "name": "Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian", 
    "pagination": "87", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113043686"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12034-019-1793-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12034-019-1793-5", 
      "https://app.dimensions.ai/details/publication/pub.1113043686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_808.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12034-019-1793-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      90 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12034-019-1793-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne47f0f3846b3418386e8b67654c425b8
4 schema:citation sg:pub.10.1007/978-3-662-03880-2
5 sg:pub.10.1007/s11082-008-9255-0
6 sg:pub.10.1186/1556-276x-9-580
7 schema:datePublished 2019-03-27
8 schema:datePublishedReg 2019-03-27
9 schema:description GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} is a suitable candidate for 1.06μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.06\,{\upmu }\hbox {m}$$\end{document} solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} with x/y=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x/y=0.58$$\end{document} can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}200 meV for GaAs0.937N0.023Bi0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{0.937}\hbox {N}_{0.023}\hbox {Bi}_{0.04}$$\end{document} alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GaAs}_{1-x-y}\hbox {N}_{x}\hbox {Bi}_{y}$$\end{document} quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N2034f2eb8fbe478f96e10a0d4813a3b3
14 N37e905fba340488086a138a91dbf4cfb
15 sg:journal.1136251
16 schema:keywords Arsenic atom substitution
17 Bi
18 Bi impurity atoms
19 GaAs
20 GaAs barrier
21 GaAs1
22 GaAsNBi
23 GaAsNBi QW
24 Hamiltonian
25 KP model
26 MeV
27 QW
28 addition
29 alloy
30 alloy GaAs1
31 atom substitution
32 atoms
33 band gap reduction
34 band offsets
35 band structure
36 barriers
37 candidates
38 cells
39 concentration
40 conditions
41 constants
42 effect
43 effect of strain
44 electronic band structure
45 energy levels
46 gain
47 gap reduction
48 generalized mode
49 high-efficiency solar cells
50 impurity atoms
51 incorporation
52 incorporation of Bi
53 kp Hamiltonian
54 laser
55 lattice constants
56 lattice-matched condition
57 levels
58 mathematical model
59 mode
60 model
61 offset
62 optical gain
63 optical properties
64 parameters
65 properties
66 quantum
67 reduction
68 significant band gap reduction
69 solar cells
70 solid-state lasers
71 state lasers
72 strains
73 structure
74 substitution
75 suitable candidates
76 variation
77 yNxBiy/GaAs
78 schema:name Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian
79 schema:pagination 87
80 schema:productId N866b5803d0924f4586d9f88c46e276a3
81 Na2095ee77a0c4c75969e50a324bf2d87
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113043686
83 https://doi.org/10.1007/s12034-019-1793-5
84 schema:sdDatePublished 2021-12-01T19:45
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N84fc25467ad442798626844f3283d935
87 schema:url https://doi.org/10.1007/s12034-019-1793-5
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N2034f2eb8fbe478f96e10a0d4813a3b3 schema:volumeNumber 42
92 rdf:type schema:PublicationVolume
93 N37e905fba340488086a138a91dbf4cfb schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 N445585f8b27547ac8737add4c3f38fe2 rdf:first sg:person.010707577443.93
96 rdf:rest rdf:nil
97 N84fc25467ad442798626844f3283d935 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N866b5803d0924f4586d9f88c46e276a3 schema:name dimensions_id
100 schema:value pub.1113043686
101 rdf:type schema:PropertyValue
102 Na2095ee77a0c4c75969e50a324bf2d87 schema:name doi
103 schema:value 10.1007/s12034-019-1793-5
104 rdf:type schema:PropertyValue
105 Ne47f0f3846b3418386e8b67654c425b8 rdf:first sg:person.010657730607.43
106 rdf:rest N445585f8b27547ac8737add4c3f38fe2
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1136251 schema:issn 0250-4707
114 0973-7669
115 schema:name Bulletin of Materials Science
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.010657730607.43 schema:affiliation grid-institutes:grid.419487.7
119 schema:familyName Sharma
120 schema:givenName Arvind
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657730607.43
122 rdf:type schema:Person
123 sg:person.010707577443.93 schema:affiliation grid-institutes:grid.419487.7
124 schema:familyName Das
125 schema:givenName T D
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707577443.93
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-662-03880-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039478122
129 https://doi.org/10.1007/978-3-662-03880-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11082-008-9255-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030274212
132 https://doi.org/10.1007/s11082-008-9255-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/1556-276x-9-580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053175914
135 https://doi.org/10.1186/1556-276x-9-580
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.419487.7 schema:alternateName Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India
138 schema:name Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...