Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Arvind Sharma, T D Das

ABSTRACT

GaAs1-x-yNxBiy is a suitable candidate for 1.06μm solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy with x/y=0.58 can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of ∼200 meV for GaAs0.937N0.023Bi0.04 alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW. More... »

PAGES

87

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5

DOI

http://dx.doi.org/10.1007/s12034-019-1793-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113043686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Arvind", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "T D", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssb.200565270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009636907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mssp.2014.11.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011184015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0928-4931(02)00075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011320603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2013.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011735827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/28/12/125025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024893506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-008-9255-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030274212", 
          "https://doi.org/10.1007/s11082-008-9255-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11082-008-9255-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030274212", 
          "https://doi.org/10.1007/s11082-008-9255-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/24/8/085010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033869636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/24/8/085010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033869636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4848265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2004.01.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039546077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051128585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053175914", 
          "https://doi.org/10.1186/1556-276x-9-580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-opt:20045021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056858358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1368156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2032618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2032618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2768312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057865159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4789624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4824077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058084341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4927922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058094712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.115341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.115341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.115341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.045203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.045203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.067205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/16.848272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061097002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1984.1072464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061304889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2015.2412455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061308303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.43.l845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063073755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.6.121202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073831670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2017.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084109466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2017.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085413524"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "GaAs1-x-yNxBiy is a suitable candidate for 1.06\u03bcm solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy with x/y=0.58 can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of \u223c200 meV for GaAs0.937N0.023Bi0.04 alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12034-019-1793-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136251", 
        "issn": [
          "0250-4707", 
          "0973-7669"
        ], 
        "name": "Bulletin of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian", 
    "pagination": "87", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5224d6f95c2ec1f02839d9ade516dd47366ad81801b58c973cd8a7528c3ee379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12034-019-1793-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113043686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12034-019-1793-5", 
      "https://app.dimensions.ai/details/publication/pub.1113043686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12034-019-1793-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1793-5'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12034-019-1793-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3b9d8ac951764e07aecf652c04191630
4 schema:citation sg:pub.10.1007/s11082-008-9255-0
5 sg:pub.10.1186/1556-276x-9-580
6 https://doi.org/10.1002/pssb.200565270
7 https://doi.org/10.1016/j.cap.2016.10.010
8 https://doi.org/10.1016/j.infrared.2013.07.012
9 https://doi.org/10.1016/j.mssp.2014.11.040
10 https://doi.org/10.1016/j.nimb.2004.01.140
11 https://doi.org/10.1016/j.spmi.2017.03.035
12 https://doi.org/10.1016/j.spmi.2017.05.032
13 https://doi.org/10.1016/s0928-4931(02)00075-9
14 https://doi.org/10.1049/ip-opt:20045021
15 https://doi.org/10.1063/1.1368156
16 https://doi.org/10.1063/1.2032618
17 https://doi.org/10.1063/1.2768312
18 https://doi.org/10.1063/1.4789624
19 https://doi.org/10.1063/1.4824077
20 https://doi.org/10.1063/1.4848265
21 https://doi.org/10.1063/1.4927922
22 https://doi.org/10.1088/0268-1242/24/8/085010
23 https://doi.org/10.1088/0268-1242/28/12/125025
24 https://doi.org/10.1103/physrev.146.575
25 https://doi.org/10.1103/physrevb.72.115341
26 https://doi.org/10.1103/physrevb.75.045203
27 https://doi.org/10.1103/physrevb.83.075307
28 https://doi.org/10.1103/physrevlett.97.067205
29 https://doi.org/10.1109/16.848272
30 https://doi.org/10.1109/jqe.1984.1072464
31 https://doi.org/10.1109/jqe.2015.2412455
32 https://doi.org/10.1143/jjap.43.l845
33 https://doi.org/10.7567/apex.6.121202
34 schema:datePublished 2019-06
35 schema:datePublishedReg 2019-06-01
36 schema:description GaAs1-x-yNxBiy is a suitable candidate for 1.06μm solid state lasers and high-efficiency solar cells. Mathematical models such as 16-band kp model is used to study the band structure, strain generated effect, band offset and variation of their parameters with Bi and N concentrations. Lattice constants of alloy GaAs1-x-yNxBiy with x/y=0.58 can match those of GaAs with the incorporation of Bi and N into GaAsNBi. Arsenic atom substitution due to the incorporation of N and Bi impurity atoms causes a significant band gap reduction of ∼200 meV for GaAs0.937N0.023Bi0.04 alloys under lattice-matched conditions and in addition, by tuning the concentrations of N and Bi, the electrical and optical properties of GaAsNBi can be controlled. Optical gain of GaAs1-x-yNxBiy quantum well (QW) and GaAs as a barrier are calculated in generalized mode and observed the effect of the energy level of GaAs barrier on the GaAsNBi QW.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N0e2d679900c7466eba9dfac6ba6ad9c6
41 N92c4517e000b4eb2b92eceeab0477748
42 sg:journal.1136251
43 schema:name Effect of strain on GaAs1-x-yNxBiy/GaAs to extract the electronic band structure and optical gain by using 16-band kp Hamiltonian
44 schema:pagination 87
45 schema:productId N749a2d872d0b43db9af3620c7c844c2d
46 N7739d3d7a76e49f6bd93c1446ec3272e
47 Nf6dcf8f030e04746b82a6f58560f69df
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113043686
49 https://doi.org/10.1007/s12034-019-1793-5
50 schema:sdDatePublished 2019-04-11T13:20
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc55edf9a7b404953a95689b59ac83c4b
53 schema:url https://link.springer.com/10.1007%2Fs12034-019-1793-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0e2d679900c7466eba9dfac6ba6ad9c6 schema:volumeNumber 42
58 rdf:type schema:PublicationVolume
59 N282835796dcb456ea60817ead49b43f1 schema:affiliation N2d27c882a86941439eede0d189ff375a
60 schema:familyName Sharma
61 schema:givenName Arvind
62 rdf:type schema:Person
63 N2affb1dce5144af2b4815967c35d3405 rdf:first Nb660173dd65e4839a48cd94df3f3fe8b
64 rdf:rest rdf:nil
65 N2d27c882a86941439eede0d189ff375a schema:name Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India
66 rdf:type schema:Organization
67 N3b9d8ac951764e07aecf652c04191630 rdf:first N282835796dcb456ea60817ead49b43f1
68 rdf:rest N2affb1dce5144af2b4815967c35d3405
69 N72dde9d3c1eb4c78b75af7e0f015575d schema:name Department of Basic & Applied Science, National Institute of Technology, 791112, Papum Pare, Arunachal Pradesh, India
70 rdf:type schema:Organization
71 N749a2d872d0b43db9af3620c7c844c2d schema:name doi
72 schema:value 10.1007/s12034-019-1793-5
73 rdf:type schema:PropertyValue
74 N7739d3d7a76e49f6bd93c1446ec3272e schema:name dimensions_id
75 schema:value pub.1113043686
76 rdf:type schema:PropertyValue
77 N92c4517e000b4eb2b92eceeab0477748 schema:issueNumber 3
78 rdf:type schema:PublicationIssue
79 Nb660173dd65e4839a48cd94df3f3fe8b schema:affiliation N72dde9d3c1eb4c78b75af7e0f015575d
80 schema:familyName Das
81 schema:givenName T D
82 rdf:type schema:Person
83 Nc55edf9a7b404953a95689b59ac83c4b schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nf6dcf8f030e04746b82a6f58560f69df schema:name readcube_id
86 schema:value 5224d6f95c2ec1f02839d9ade516dd47366ad81801b58c973cd8a7528c3ee379
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136251 schema:issn 0250-4707
95 0973-7669
96 schema:name Bulletin of Materials Science
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s11082-008-9255-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030274212
99 https://doi.org/10.1007/s11082-008-9255-0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1186/1556-276x-9-580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053175914
102 https://doi.org/10.1186/1556-276x-9-580
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/pssb.200565270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009636907
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.cap.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051128585
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.infrared.2013.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011735827
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.mssp.2014.11.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011184015
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.nimb.2004.01.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039546077
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.spmi.2017.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084109466
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.spmi.2017.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085413524
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0928-4931(02)00075-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320603
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1049/ip-opt:20045021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056858358
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1368156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699617
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.2032618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836075
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.2768312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057865159
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.4789624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068610
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.4824077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058084341
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.4848265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038397753
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.4927922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058094712
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/0268-1242/24/8/085010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033869636
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0268-1242/28/12/125025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024893506
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrev.146.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433012
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.72.115341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615129
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.75.045203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619997
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.83.075307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634904
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.97.067205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832682
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/16.848272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061097002
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/jqe.1984.1072464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061304889
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/jqe.2015.2412455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061308303
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1143/jjap.43.l845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063073755
157 rdf:type schema:CreativeWork
158 https://doi.org/10.7567/apex.6.121202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073831670
159 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...