Colloidally synthesized defect-rich MoSe2 nanosheets for superior catalytic activity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-06

AUTHORS

Md Samim Hassan, Atanu Jana, Soniya Gahlawat, Nimai Bhandary, Susnata Bera, Pravin P Ingole, Sameer Sapra

ABSTRACT

Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {2H-MoSe}_{2}$$\end{document} NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10mAcm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\hbox {mA}\,\hbox {cm}^{-2}$$\end{document} current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoSe}_{2}$$\end{document} NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02±0.18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.02 \pm 0.18\%$$\end{document}, comparable with Pt CE (7.84±0.10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.84 \pm 0.10\%$$\end{document}) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications. More... »

PAGES

74

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12034-019-1774-8

DOI

http://dx.doi.org/10.1007/s12034-019-1774-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112602510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan", 
        "givenName": "Md Samim", 
        "id": "sg:person.013736543767.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736543767.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jana", 
        "givenName": "Atanu", 
        "id": "sg:person.01074527167.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074527167.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gahlawat", 
        "givenName": "Soniya", 
        "id": "sg:person.013340225036.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340225036.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhandary", 
        "givenName": "Nimai", 
        "id": "sg:person.012277615003.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277615003.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bera", 
        "givenName": "Susnata", 
        "id": "sg:person.010070212572.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070212572.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ingole", 
        "givenName": "Pravin P", 
        "id": "sg:person.010315371167.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010315371167.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sapra", 
        "givenName": "Sameer", 
        "id": "sg:person.01307614665.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307614665.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep22516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010520066", 
          "https://doi.org/10.1038/srep22516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009866802", 
          "https://doi.org/10.1038/srep04215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017256480", 
          "https://doi.org/10.1038/ncomms2547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021773438", 
          "https://doi.org/10.1038/srep04063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {2H-MoSe}_{2}$$\\end{document} NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210\u2013225 mV) at 10mAcm-2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$10\\,\\hbox {mA}\\,\\hbox {cm}^{-2}$$\\end{document} current density and a small Tafel slope (54\u201368 mV per decade). Moreover, these MoSe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {MoSe}_{2}$$\\end{document} NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02\u00b10.18%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$7.02 \\pm 0.18\\%$$\\end{document}, comparable with Pt CE (7.84\u00b10.10%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$7.84 \\pm 0.10\\%$$\\end{document}) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12034-019-1774-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136251", 
        "issn": [
          "0250-4707", 
          "0973-7669"
        ], 
        "name": "Bulletin of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "counter electrode", 
      "catalytic applications", 
      "colloidal synthesis", 
      "transition metal dichalcogenide nanosheets", 
      "hydrogen evolution reaction performance", 
      "Pt counter electrode", 
      "novel synthetic strategy", 
      "superior catalytic activity", 
      "metal dichalcogenide nanosheets", 
      "electrocatalytic hydrogen evolution reaction performance", 
      "evolution reaction performance", 
      "small Tafel slope", 
      "fabrication of dye", 
      "power conversion efficiency", 
      "synthetic strategy", 
      "dichalcogenide nanosheets", 
      "nanosheets", 
      "defect-rich nanosheets", 
      "Raman spectra", 
      "reaction performance", 
      "Tafel slope", 
      "MoSe2 nanosheets", 
      "catalytic activity", 
      "defect sites", 
      "additional vibration modes", 
      "current density", 
      "solar cells", 
      "conversion efficiency", 
      "synthesis", 
      "Se vacancies", 
      "solvent", 
      "electrode", 
      "dye", 
      "Colloidally", 
      "spectra", 
      "fabrication", 
      "simplified procedure", 
      "applications", 
      "vibration modes", 
      "amount", 
      "sites", 
      "presence", 
      "density", 
      "efficiency", 
      "edge", 
      "challenging task", 
      "large number", 
      "thickness", 
      "mode", 
      "performance", 
      "activity", 
      "slope", 
      "cells", 
      "procedure", 
      "results", 
      "strategies", 
      "TMD", 
      "thickness variation", 
      "variation", 
      "number", 
      "defects", 
      "aligned edges", 
      "task"
    ], 
    "name": "Colloidally synthesized defect-rich MoSe2 nanosheets for superior catalytic activity", 
    "pagination": "74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112602510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12034-019-1774-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12034-019-1774-8", 
      "https://app.dimensions.ai/details/publication/pub.1112602510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_796.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12034-019-1774-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1774-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1774-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1774-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1774-8'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      92 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12034-019-1774-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf9f3d3aa574046fe979bdcbf0b711d3e
4 schema:citation sg:pub.10.1038/ncomms2547
5 sg:pub.10.1038/nnano.2012.193
6 sg:pub.10.1038/srep04063
7 sg:pub.10.1038/srep04215
8 sg:pub.10.1038/srep22516
9 schema:datePublished 2019-03-06
10 schema:datePublishedReg 2019-03-06
11 schema:description Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {2H-MoSe}_{2}$$\end{document} NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10mAcm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\hbox {mA}\,\hbox {cm}^{-2}$$\end{document} current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoSe}_{2}$$\end{document} NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02±0.18%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.02 \pm 0.18\%$$\end{document}, comparable with Pt CE (7.84±0.10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.84 \pm 0.10\%$$\end{document}) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N7567bfd06f9c4651a6e77f430916f6eb
15 N90e8b2f39b3f4566b6cd42c998784302
16 sg:journal.1136251
17 schema:keywords Colloidally
18 MoSe2 nanosheets
19 Pt counter electrode
20 Raman spectra
21 Se vacancies
22 TMD
23 Tafel slope
24 activity
25 additional vibration modes
26 aligned edges
27 amount
28 applications
29 catalytic activity
30 catalytic applications
31 cells
32 challenging task
33 colloidal synthesis
34 conversion efficiency
35 counter electrode
36 current density
37 defect sites
38 defect-rich nanosheets
39 defects
40 density
41 dichalcogenide nanosheets
42 dye
43 edge
44 efficiency
45 electrocatalytic hydrogen evolution reaction performance
46 electrode
47 evolution reaction performance
48 fabrication
49 fabrication of dye
50 hydrogen evolution reaction performance
51 large number
52 metal dichalcogenide nanosheets
53 mode
54 nanosheets
55 novel synthetic strategy
56 number
57 performance
58 power conversion efficiency
59 presence
60 procedure
61 reaction performance
62 results
63 simplified procedure
64 sites
65 slope
66 small Tafel slope
67 solar cells
68 solvent
69 spectra
70 strategies
71 superior catalytic activity
72 synthesis
73 synthetic strategy
74 task
75 thickness
76 thickness variation
77 transition metal dichalcogenide nanosheets
78 variation
79 vibration modes
80 schema:name Colloidally synthesized defect-rich MoSe2 nanosheets for superior catalytic activity
81 schema:pagination 74
82 schema:productId N44ade99db43347b890dcad29acde7939
83 Nb3ff5e876815452f9a76f1d277e7986c
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112602510
85 https://doi.org/10.1007/s12034-019-1774-8
86 schema:sdDatePublished 2022-11-24T21:04
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nde6beb393c84450e81d2c4f19ceb4a54
89 schema:url https://doi.org/10.1007/s12034-019-1774-8
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N1234eb046f134709acfa4b2dba5ab66e rdf:first sg:person.010070212572.97
94 rdf:rest Nbd36093454b140a48e8049d245348375
95 N434d366814bf4b34b43f3f62da13c7b7 rdf:first sg:person.01074527167.35
96 rdf:rest N71e7aa4d93f047f8a57cd0533d4944d7
97 N44ade99db43347b890dcad29acde7939 schema:name doi
98 schema:value 10.1007/s12034-019-1774-8
99 rdf:type schema:PropertyValue
100 N536c0aefb5e24c4e8db2c8fab439b118 rdf:first sg:person.012277615003.10
101 rdf:rest N1234eb046f134709acfa4b2dba5ab66e
102 N71e7aa4d93f047f8a57cd0533d4944d7 rdf:first sg:person.013340225036.57
103 rdf:rest N536c0aefb5e24c4e8db2c8fab439b118
104 N7567bfd06f9c4651a6e77f430916f6eb schema:issueNumber 2
105 rdf:type schema:PublicationIssue
106 N90e8b2f39b3f4566b6cd42c998784302 schema:volumeNumber 42
107 rdf:type schema:PublicationVolume
108 N984846787ad54b3484c5819d314fa560 rdf:first sg:person.01307614665.97
109 rdf:rest rdf:nil
110 Nb3ff5e876815452f9a76f1d277e7986c schema:name dimensions_id
111 schema:value pub.1112602510
112 rdf:type schema:PropertyValue
113 Nbd36093454b140a48e8049d245348375 rdf:first sg:person.010315371167.85
114 rdf:rest N984846787ad54b3484c5819d314fa560
115 Nde6beb393c84450e81d2c4f19ceb4a54 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nf9f3d3aa574046fe979bdcbf0b711d3e rdf:first sg:person.013736543767.08
118 rdf:rest N434d366814bf4b34b43f3f62da13c7b7
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1136251 schema:issn 0250-4707
126 0973-7669
127 schema:name Bulletin of Materials Science
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010070212572.97 schema:affiliation grid-institutes:grid.417967.a
131 schema:familyName Bera
132 schema:givenName Susnata
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070212572.97
134 rdf:type schema:Person
135 sg:person.010315371167.85 schema:affiliation grid-institutes:grid.417967.a
136 schema:familyName Ingole
137 schema:givenName Pravin P
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010315371167.85
139 rdf:type schema:Person
140 sg:person.01074527167.35 schema:affiliation grid-institutes:grid.417967.a
141 schema:familyName Jana
142 schema:givenName Atanu
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074527167.35
144 rdf:type schema:Person
145 sg:person.012277615003.10 schema:affiliation grid-institutes:grid.417967.a
146 schema:familyName Bhandary
147 schema:givenName Nimai
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277615003.10
149 rdf:type schema:Person
150 sg:person.01307614665.97 schema:affiliation grid-institutes:grid.417967.a
151 schema:familyName Sapra
152 schema:givenName Sameer
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307614665.97
154 rdf:type schema:Person
155 sg:person.013340225036.57 schema:affiliation grid-institutes:grid.417967.a
156 schema:familyName Gahlawat
157 schema:givenName Soniya
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340225036.57
159 rdf:type schema:Person
160 sg:person.013736543767.08 schema:affiliation grid-institutes:grid.417967.a
161 schema:familyName Hassan
162 schema:givenName Md Samim
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736543767.08
164 rdf:type schema:Person
165 sg:pub.10.1038/ncomms2547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017256480
166 https://doi.org/10.1038/ncomms2547
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
169 https://doi.org/10.1038/nnano.2012.193
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep04063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021773438
172 https://doi.org/10.1038/srep04063
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/srep04215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009866802
175 https://doi.org/10.1038/srep04215
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/srep22516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010520066
178 https://doi.org/10.1038/srep22516
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.417967.a schema:alternateName Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India
181 schema:name Department of Chemistry, Indian Institute of Technology Delhi, 110016, New Delhi, India
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...