Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

P Z Si, J Park, H D Qian, C J Choi, Y S Li, H L Ge

ABSTRACT

High density MnAl–C magnets with enhanced coercivity and remanent magnetization were prepared by high-pressure compaction of the τ-phase obtained by annealing the as-prepared gas-atomized powders, which are spherical in shape with size in the range of 1–7 μm. The as-prepared gas-atomized powders were composed of ε- as the major phase and γ2- as the minor phase. The massive phase transformation of ε→τ in the gas-atomized powders occurs at 720 K and accomplishes at 806 K, both of which are lower than those of the water-quenched ε-MnAl–C alloys with the same composition. An optimized temperature of 760 K, at which the decomposition of metastable τ-phase was minimized, was selected to prepare the ferromagnetic τ- from the ε-phase. The spherical τ-phase powders were pressed at room temperature into two dimensional plates that stack along the direction of compaction, forming high density (98.6%) bulk magnets that exhibit larger coercivity and higher remanent magnetization than that of the τ-phase powders. The grain size of the compacted samples was observed to be in the range of 10–100 nm. The coercivity (0.34 T) of the dense samples is twice as large as that of the τ-phase powders, owing to the refined grain size and enlarged dislocation density resulting from high-pressure compaction. More... »

PAGES

95

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12034-019-1768-6

DOI

http://dx.doi.org/10.1007/s12034-019-1768-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113042243


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Jiliang University", 
          "id": "https://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea", 
            "College of Materials Science and Engineering, China Jiliang University, 310018, Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Si", 
        "givenName": "P Z", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "H D", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "C J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Engineering Ceramics Research Group, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Y S", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Jiliang University", 
          "id": "https://www.grid.ac/institutes/grid.411485.d", 
          "name": [
            "College of Materials Science and Engineering, China Jiliang University, 310018, Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "H L", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/zaac.19080590136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016764636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.11.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018232488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2011.03.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027468923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/6/064201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4943242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040559992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041302224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-012-4023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044500052", 
          "https://doi.org/10.1007/s12540-012-4023-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/met4010020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046970790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4939578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051038733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1984610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057834320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4974277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.1977.1059574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061668745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2014.2320598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061687010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.13.1444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063091956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083549425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084527494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084527494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084527494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.04.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085095770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma10091016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091401295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2017.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.11.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092958188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.224411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099776739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.224411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099776739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5007241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100203477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "High density MnAl\u2013C magnets with enhanced coercivity and remanent magnetization were prepared by high-pressure compaction of the \u03c4-phase obtained by annealing the as-prepared gas-atomized powders, which are spherical in shape with size in the range of 1\u20137 \u03bcm. The as-prepared gas-atomized powders were composed of \u03b5- as the major phase and \u03b32- as the minor phase. The massive phase transformation of \u03b5\u2192\u03c4 in the gas-atomized powders occurs at 720 K and accomplishes at 806 K, both of which are lower than those of the water-quenched \u03b5-MnAl\u2013C alloys with the same composition. An optimized temperature of 760 K, at which the decomposition of metastable \u03c4-phase was minimized, was selected to prepare the ferromagnetic \u03c4- from the \u03b5-phase. The spherical \u03c4-phase powders were pressed at room temperature into two dimensional plates that stack along the direction of compaction, forming high density (98.6%) bulk magnets that exhibit larger coercivity and higher remanent magnetization than that of the \u03c4-phase powders. The grain size of the compacted samples was observed to be in the range of 10\u2013100 nm. The coercivity (0.34 T) of the dense samples is twice as large as that of the \u03c4-phase powders, owing to the refined grain size and enlarged dislocation density resulting from high-pressure compaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12034-019-1768-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5012201", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136251", 
        "issn": [
          "0250-4707", 
          "0973-7669"
        ], 
        "name": "Bulletin of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Enhanced magnetic performance of bulk nanocrystalline MnAl\u2013C prepared by high pressure compaction of gas atomized powders", 
    "pagination": "95", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27ebab09fe0780cb19816ef9feab280a27055b4c71e605dad790c708901c0dbf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12034-019-1768-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113042243"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12034-019-1768-6", 
      "https://app.dimensions.ai/details/publication/pub.1113042243"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12034-019-1768-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1768-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1768-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1768-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12034-019-1768-6'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12034-019-1768-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N51fe595b22b241d4a45ba735f51f5d4a
4 schema:citation sg:pub.10.1007/s12540-012-4023-x
5 https://doi.org/10.1002/zaac.19080590136
6 https://doi.org/10.1016/j.jallcom.2015.02.041
7 https://doi.org/10.1016/j.jallcom.2017.02.028
8 https://doi.org/10.1016/j.jallcom.2017.04.038
9 https://doi.org/10.1016/j.jmmm.2016.11.045
10 https://doi.org/10.1016/j.jmmm.2017.04.083
11 https://doi.org/10.1016/j.jmmm.2017.11.094
12 https://doi.org/10.1016/j.scriptamat.2017.09.008
13 https://doi.org/10.1016/j.tsf.2011.03.094
14 https://doi.org/10.1063/1.1984610
15 https://doi.org/10.1063/1.4939578
16 https://doi.org/10.1063/1.4943242
17 https://doi.org/10.1063/1.4974277
18 https://doi.org/10.1063/1.5007241
19 https://doi.org/10.1088/0953-8984/26/6/064201
20 https://doi.org/10.1103/physrevb.96.224411
21 https://doi.org/10.1109/tmag.1977.1059574
22 https://doi.org/10.1109/tmag.2014.2320598
23 https://doi.org/10.1143/jpsj.13.1444
24 https://doi.org/10.3390/ma10091016
25 https://doi.org/10.3390/met4010020
26 schema:datePublished 2019-06
27 schema:datePublishedReg 2019-06-01
28 schema:description High density MnAl–C magnets with enhanced coercivity and remanent magnetization were prepared by high-pressure compaction of the τ-phase obtained by annealing the as-prepared gas-atomized powders, which are spherical in shape with size in the range of 1–7 μm. The as-prepared gas-atomized powders were composed of ε- as the major phase and γ2- as the minor phase. The massive phase transformation of ε→τ in the gas-atomized powders occurs at 720 K and accomplishes at 806 K, both of which are lower than those of the water-quenched ε-MnAl–C alloys with the same composition. An optimized temperature of 760 K, at which the decomposition of metastable τ-phase was minimized, was selected to prepare the ferromagnetic τ- from the ε-phase. The spherical τ-phase powders were pressed at room temperature into two dimensional plates that stack along the direction of compaction, forming high density (98.6%) bulk magnets that exhibit larger coercivity and higher remanent magnetization than that of the τ-phase powders. The grain size of the compacted samples was observed to be in the range of 10–100 nm. The coercivity (0.34 T) of the dense samples is twice as large as that of the τ-phase powders, owing to the refined grain size and enlarged dislocation density resulting from high-pressure compaction.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nb017cf383cf9492282fd7cc6c21e859c
33 Nce83bbb164bf43d191b840c9c4ed36f6
34 sg:journal.1136251
35 schema:name Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders
36 schema:pagination 95
37 schema:productId N68af07f337d1476db1055c319c9af727
38 Na29084d8641b4c7da7b3d47ad615ca06
39 Nf49b236e8a1946b28c80a1dffea54bc2
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113042243
41 https://doi.org/10.1007/s12034-019-1768-6
42 schema:sdDatePublished 2019-04-11T13:19
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N4d36d42694d74902bd5b13eccac4e031
45 schema:url https://link.springer.com/10.1007%2Fs12034-019-1768-6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1a95c5e603f3481aaaf72011519216f8 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
50 schema:familyName Li
51 schema:givenName Y S
52 rdf:type schema:Person
53 N45b56ee1199144dab9928922eea07c39 rdf:first N1a95c5e603f3481aaaf72011519216f8
54 rdf:rest Nff8649e1a5054e45b188adaa780cf221
55 N4d36d42694d74902bd5b13eccac4e031 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N51fe595b22b241d4a45ba735f51f5d4a rdf:first N8905a49cf30c45f2964d86a168ef74ae
58 rdf:rest Ndb7961f35969436196115722a727c2a7
59 N68af07f337d1476db1055c319c9af727 schema:name dimensions_id
60 schema:value pub.1113042243
61 rdf:type schema:PropertyValue
62 N7d05b74a51d94bc9bdf1b9cabd7151b5 rdf:first N8aa0a1ee10ee48a7b012d097513bb808
63 rdf:rest N836a03db31354b0bac0683d0a47bf961
64 N836a03db31354b0bac0683d0a47bf961 rdf:first Nb612ef2413d04863bbf33ab2eb56ead5
65 rdf:rest N45b56ee1199144dab9928922eea07c39
66 N8905a49cf30c45f2964d86a168ef74ae schema:affiliation https://www.grid.ac/institutes/grid.411485.d
67 schema:familyName Si
68 schema:givenName P Z
69 rdf:type schema:Person
70 N8aa0a1ee10ee48a7b012d097513bb808 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
71 schema:familyName Qian
72 schema:givenName H D
73 rdf:type schema:Person
74 Na29084d8641b4c7da7b3d47ad615ca06 schema:name readcube_id
75 schema:value 27ebab09fe0780cb19816ef9feab280a27055b4c71e605dad790c708901c0dbf
76 rdf:type schema:PropertyValue
77 Nb017cf383cf9492282fd7cc6c21e859c schema:volumeNumber 42
78 rdf:type schema:PublicationVolume
79 Nb612ef2413d04863bbf33ab2eb56ead5 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
80 schema:familyName Choi
81 schema:givenName C J
82 rdf:type schema:Person
83 Nb8ea2c4069924550a1418904dee99740 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
84 schema:familyName Park
85 schema:givenName J
86 rdf:type schema:Person
87 Nce83bbb164bf43d191b840c9c4ed36f6 schema:issueNumber 3
88 rdf:type schema:PublicationIssue
89 Ndb7961f35969436196115722a727c2a7 rdf:first Nb8ea2c4069924550a1418904dee99740
90 rdf:rest N7d05b74a51d94bc9bdf1b9cabd7151b5
91 Nf49b236e8a1946b28c80a1dffea54bc2 schema:name doi
92 schema:value 10.1007/s12034-019-1768-6
93 rdf:type schema:PropertyValue
94 Nff3d1f63706b46608d996ac03b31c90d schema:affiliation https://www.grid.ac/institutes/grid.411485.d
95 schema:familyName Ge
96 schema:givenName H L
97 rdf:type schema:Person
98 Nff8649e1a5054e45b188adaa780cf221 rdf:first Nff3d1f63706b46608d996ac03b31c90d
99 rdf:rest rdf:nil
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:grant.5012201 http://pending.schema.org/fundedItem sg:pub.10.1007/s12034-019-1768-6
107 rdf:type schema:MonetaryGrant
108 sg:journal.1136251 schema:issn 0250-4707
109 0973-7669
110 schema:name Bulletin of Materials Science
111 rdf:type schema:Periodical
112 sg:pub.10.1007/s12540-012-4023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044500052
113 https://doi.org/10.1007/s12540-012-4023-x
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/zaac.19080590136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016764636
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jallcom.2015.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041302224
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jallcom.2017.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083549425
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jallcom.2017.04.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084527494
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmmm.2016.11.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232488
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmmm.2017.04.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085095770
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jmmm.2017.11.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092958188
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.scriptamat.2017.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091769646
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.tsf.2011.03.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027468923
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1984610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057834320
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.4939578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051038733
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.4943242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559992
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.4974277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099406
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.5007241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100203477
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0953-8984/26/6/064201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029799271
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.96.224411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099776739
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tmag.1977.1059574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061668745
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tmag.2014.2320598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061687010
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1143/jpsj.13.1444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063091956
152 rdf:type schema:CreativeWork
153 https://doi.org/10.3390/ma10091016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091401295
154 rdf:type schema:CreativeWork
155 https://doi.org/10.3390/met4010020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046970790
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.410902.e schema:alternateName Korea Institute of Materials Science
158 schema:name Engineering Ceramics Research Group, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
159 Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.411485.d schema:alternateName China Jiliang University
162 schema:name College of Materials Science and Engineering, China Jiliang University, 310018, Hangzhou, People’s Republic of China
163 Powder and Ceramic Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...