Thermo-transport properties of Zn-substituted layered Li-nickel oxide, LiNiO2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Md Mofasser Mallick, Satish Vitta

ABSTRACT

The layered Li-TM-O2 materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted LiNi1-xZnxO2 for 0≤x≤0.16 have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For x<0.08, the compounds were of single phase belonging to the space group R-3mH while for x>0.08 an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of ∼10-4 to 10-2Ωm between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, ∼10 meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from ∼95 to 35μVK-1 and the corresponding power factor is ∼12μWm-1K-2 for the x=0.16 compound. More... »

PAGES

150

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12034-018-1669-0

DOI

http://dx.doi.org/10.1007/s12034-018-1669-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110337567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mallick", 
        "givenName": "Md Mofasser", 
        "id": "sg:person.013516255266.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitta", 
        "givenName": "Satish", 
        "id": "sg:person.01325463133.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2738(95)00005-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002959952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/31/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013990034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168516030079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018007276", 
          "https://doi.org/10.1134/s0020168516030079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(01)00992-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022952601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2008.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028483758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2085950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033281304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(98)00153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039392398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2013.08.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048298034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2006.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049747067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-017-1978-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012416", 
          "https://doi.org/10.1007/s11581-017-1978-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-017-1978-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054012416", 
          "https://doi.org/10.1007/s11581-017-1978-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm021107j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055409494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm021107j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055409494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp050486b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056060075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp050486b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056060075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3027060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057895052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/22/5/057201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059152869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.56.021101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073842008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.7b00476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085322015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The layered Li-TM-O2 materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted LiNi1-xZnxO2 for 0\u2264x\u22640.16 have been investigated in the temperature range of 300\u2013900 K for potential application as a high-temperature thermoelectric material. For x<0.08, the compounds were of single phase belonging to the space group R-3mH while for x>0.08 an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of \u223c10-4 to 10-2\u03a9m between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, \u223c10 meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from \u223c95 to 35\u03bcVK-1 and the corresponding power factor is \u223c12\u03bcWm-1K-2 for the x=0.16 compound.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12034-018-1669-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136251", 
        "issn": [
          "0250-4707", 
          "0973-7669"
        ], 
        "name": "Bulletin of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Thermo-transport properties of Zn-substituted layered Li-nickel oxide, LiNiO2", 
    "pagination": "150", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "566a0b9c0664bb5d703e68980771066f90e4c312d9fc0d117af9fb0863e69081"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12034-018-1669-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110337567"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12034-018-1669-0", 
      "https://app.dimensions.ai/details/publication/pub.1110337567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000280_0000000280/records_121686_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12034-018-1669-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12034-018-1669-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12034-018-1669-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12034-018-1669-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12034-018-1669-0'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12034-018-1669-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6ac2a8f90d3f4084b39f54b278a3355f
4 schema:citation sg:pub.10.1007/s11581-017-1978-0
5 sg:pub.10.1134/s0020168516030079
6 https://doi.org/10.1016/0167-2738(95)00005-q
7 https://doi.org/10.1016/j.ceramint.2013.08.084
8 https://doi.org/10.1016/j.jallcom.2008.04.013
9 https://doi.org/10.1016/j.jpcs.2006.05.006
10 https://doi.org/10.1016/s0167-2738(01)00992-4
11 https://doi.org/10.1016/s0378-7753(98)00153-0
12 https://doi.org/10.1021/acs.inorgchem.7b00476
13 https://doi.org/10.1021/cm021107j
14 https://doi.org/10.1021/jp050486b
15 https://doi.org/10.1063/1.3027060
16 https://doi.org/10.1088/0953-8984/15/31/303
17 https://doi.org/10.1088/1674-1056/22/5/057201
18 https://doi.org/10.1149/1.2085950
19 https://doi.org/10.7567/jjap.56.021101
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description The layered Li-TM-O2 materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted LiNi1-xZnxO2 for 0≤x≤0.16 have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For x<0.08, the compounds were of single phase belonging to the space group R-3mH while for x>0.08 an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of ∼10-4 to 10-2Ωm between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, ∼10 meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from ∼95 to 35μVK-1 and the corresponding power factor is ∼12μWm-1K-2 for the x=0.16 compound.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N8e8f81f41c074c839bda449a60e1cfbd
27 Neafffa8b85a64440893a1c939f46ec9e
28 sg:journal.1136251
29 schema:name Thermo-transport properties of Zn-substituted layered Li-nickel oxide, LiNiO2
30 schema:pagination 150
31 schema:productId N17885c83826c46b89ac014705af507c7
32 Na943de332589445983db9c66f6745b84
33 Nf7abf558969a4476abc4f19a7d2f2e97
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110337567
35 https://doi.org/10.1007/s12034-018-1669-0
36 schema:sdDatePublished 2019-04-11T08:17
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N484b4e6f43844c6393e3d72d1b4aa108
39 schema:url https://link.springer.com/10.1007%2Fs12034-018-1669-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N17885c83826c46b89ac014705af507c7 schema:name doi
44 schema:value 10.1007/s12034-018-1669-0
45 rdf:type schema:PropertyValue
46 N484b4e6f43844c6393e3d72d1b4aa108 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N6ac2a8f90d3f4084b39f54b278a3355f rdf:first sg:person.013516255266.42
49 rdf:rest N999ec86ebec54d148cb6ece6b4b1fd31
50 N8e8f81f41c074c839bda449a60e1cfbd schema:volumeNumber 41
51 rdf:type schema:PublicationVolume
52 N999ec86ebec54d148cb6ece6b4b1fd31 rdf:first sg:person.01325463133.20
53 rdf:rest rdf:nil
54 Na943de332589445983db9c66f6745b84 schema:name dimensions_id
55 schema:value pub.1110337567
56 rdf:type schema:PropertyValue
57 Neafffa8b85a64440893a1c939f46ec9e schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 Nf7abf558969a4476abc4f19a7d2f2e97 schema:name readcube_id
60 schema:value 566a0b9c0664bb5d703e68980771066f90e4c312d9fc0d117af9fb0863e69081
61 rdf:type schema:PropertyValue
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1136251 schema:issn 0250-4707
69 0973-7669
70 schema:name Bulletin of Materials Science
71 rdf:type schema:Periodical
72 sg:person.01325463133.20 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
73 schema:familyName Vitta
74 schema:givenName Satish
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20
76 rdf:type schema:Person
77 sg:person.013516255266.42 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
78 schema:familyName Mallick
79 schema:givenName Md Mofasser
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42
81 rdf:type schema:Person
82 sg:pub.10.1007/s11581-017-1978-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012416
83 https://doi.org/10.1007/s11581-017-1978-0
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0020168516030079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018007276
86 https://doi.org/10.1134/s0020168516030079
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0167-2738(95)00005-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1002959952
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.ceramint.2013.08.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048298034
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jallcom.2008.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028483758
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jpcs.2006.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049747067
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0167-2738(01)00992-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022952601
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0378-7753(98)00153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039392398
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/acs.inorgchem.7b00476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085322015
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/cm021107j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055409494
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/jp050486b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056060075
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.3027060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057895052
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0953-8984/15/31/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013990034
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/1674-1056/22/5/057201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059152869
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1149/1.2085950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033281304
113 rdf:type schema:CreativeWork
114 https://doi.org/10.7567/jjap.56.021101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073842008
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
117 schema:name Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...