Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

In Hee Lee, Keunsoo Kang, Byung Woog Kang, Soo jung Lee, Woo Kyun Bae, Jun Eul Hwang, Hye Jin Kim, Su Yeon Park, Jun Seok Park, Gyu Seog Choi, Jong Gwang Kim

ABSTRACT

A good pathologic response to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is associated with a better prognosis. However, there is no effective method to predict CRT response in LARC patients. Therefore, this study used whole-exome sequencing (WES) to identify novel biomarker predicting CRT benefit in LARC. Two independent tumor tissue sets were used to evaluate the genetic differences between the good CRT response group (15 patients achieved a pathologic complete response (pCR)) and the poor CRT response group (15 patients with pathologic stage III). After applying WES to the discovery set of 30 patients, additional samples (n = 67) were genotyped for candidate variants using TaqMan or Sanger sequencing for validation. Overall, this study included a total of 97 LARC patients. In the discovery and validation set, there was no known genetic mutation to predict response between two groups, while five candidate variants (BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were found to be significantly associated with pCR. In the dominant model, the GC/CC genotype of DLC1 rs3816748 (p = 0.032), AC/CC genotype of DNAH14 rs3105571 (p = 0.009), and TT genotype of RAET1 rs912565 (p < 0.0001) were associated with a higher pCR rate. In the recessive model, BCL2L10 rs2231292 (p = 0.036) and ITIH5 rs3824658 (p = 0.003) were significantly associated with pCR. In the co-dominant model, 4 candidate variants (DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were significantly correlated with pCR. However, none of the candidate variants was associated with relapse-free or overall survival. The present results suggest that genetic variations of the BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565 genes can be used as biomarkers predicting the CRT response for patients with LARC. More... »

PAGES

145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12032-018-1202-8

DOI

http://dx.doi.org/10.1007/s12032-018-1202-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106915467

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30206710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "In Hee", 
        "id": "sg:person.01145413006.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145413006.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keunsoo", 
        "id": "sg:person.01152011320.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152011320.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Byung Woog", 
        "id": "sg:person.0677676015.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677676015.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Soo jung", 
        "id": "sg:person.01100343463.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100343463.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Woo Kyun", 
        "id": "sg:person.01027453017.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027453017.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jun Eul", 
        "id": "sg:person.01211121126.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211121126.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hye Jin", 
        "id": "sg:person.01273042554.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273042554.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Su Yeon", 
        "id": "sg:person.01344476312.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344476312.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jun Seok", 
        "id": "sg:person.0616020740.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616020740.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Gyu Seog", 
        "id": "sg:person.01357254566.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357254566.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyungpook National University", 
          "id": "https://www.grid.ac/institutes/grid.258803.4", 
          "name": [
            "Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jong Gwang", 
        "id": "sg:person.015763170324.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763170324.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/bjh.12072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002098624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1210669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003891366", 
          "https://doi.org/10.1038/sj.onc.1210669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005347056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2015.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005922753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2015.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005922753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005954516", 
          "https://doi.org/10.1038/nbt1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(10)70172-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007782854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011832020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.200939502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016578271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eji.200939502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016578271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019307928", 
          "https://doi.org/10.1038/nbt.1754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-015-0642-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019593802", 
          "https://doi.org/10.1186/s13058-015-0642-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-015-2231-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020922985", 
          "https://doi.org/10.1007/s00384-015-2231-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.14.8361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023698956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.4119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025059219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-010-0849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027191489", 
          "https://doi.org/10.1007/s00432-010-0849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-010-0849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027191489", 
          "https://doi.org/10.1007/s00432-010-0849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-010-0849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027191489", 
          "https://doi.org/10.1007/s00432-010-0849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-1740-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099908", 
          "https://doi.org/10.1245/s10434-011-1740-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032756706", 
          "https://doi.org/10.1038/nature07086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2005.033001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040543457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clcc.2015.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041072009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.39.7901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041464806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/181384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047748352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5858/arpa.2015-0261-sa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048002605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.7757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048032678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3349/ymj.2015.56.6.1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052137128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/carcin/bgt375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053466380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.29.5.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071516181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or_00000814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071537598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/epi.32089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072302874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2017.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084082472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms18030573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084435869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "A good pathologic response to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is associated with a better prognosis. However, there is no effective method to predict CRT response in LARC patients. Therefore, this study used whole-exome sequencing (WES) to identify novel biomarker predicting CRT benefit in LARC. Two independent tumor tissue sets were used to evaluate the genetic differences between the good CRT response group (15 patients achieved a pathologic complete response (pCR)) and the poor CRT response group (15 patients with pathologic stage III). After applying WES to the discovery set of 30 patients, additional samples (n\u2009=\u200967) were genotyped for candidate variants using TaqMan or Sanger sequencing for validation. Overall, this study included a total of 97 LARC patients. In the discovery and validation set, there was no known genetic mutation to predict response between two groups, while five candidate variants (BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were found to be significantly associated with pCR. In the dominant model, the GC/CC genotype of DLC1 rs3816748 (p\u2009=\u20090.032), AC/CC genotype of DNAH14 rs3105571 (p\u2009=\u20090.009), and TT genotype of RAET1 rs912565 (p\u2009<\u20090.0001) were associated with a higher pCR rate. In the recessive model, BCL2L10 rs2231292 (p\u2009=\u20090.036) and ITIH5 rs3824658 (p\u2009=\u20090.003) were significantly associated with pCR. In the co-dominant model, 4 candidate variants (DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were significantly correlated with pCR. However, none of the candidate variants was associated with relapse-free or overall survival. The present results suggest that genetic variations of the BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565 genes can be used as biomarkers predicting the CRT response for patients with LARC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12032-018-1202-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7475300", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1094524", 
        "issn": [
          "1357-0560", 
          "1559-131X"
        ], 
        "name": "Medical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer", 
    "pagination": "145", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9c0722416f96e97e1903db3b29c531b9391e0adc214ec0bbd0f0b5760902ab4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30206710"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9435512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12032-018-1202-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106915467"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12032-018-1202-8", 
      "https://app.dimensions.ai/details/publication/pub.1106915467"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12032-018-1202-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12032-018-1202-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12032-018-1202-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12032-018-1202-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12032-018-1202-8'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12032-018-1202-8 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nf4c3bab3e31b4dd8b7cab875321b6244
4 schema:citation sg:pub.10.1007/s00384-015-2231-9
5 sg:pub.10.1007/s00432-010-0849-0
6 sg:pub.10.1038/nature07086
7 sg:pub.10.1038/nbt.1754
8 sg:pub.10.1038/nbt1486
9 sg:pub.10.1038/sj.onc.1210669
10 sg:pub.10.1186/s13058-015-0642-8
11 sg:pub.10.1245/s10434-011-1740-1
12 https://doi.org/10.1002/eji.200939502
13 https://doi.org/10.1016/j.clcc.2015.05.014
14 https://doi.org/10.1016/j.ijrobp.2012.12.018
15 https://doi.org/10.1016/j.ijrobp.2017.03.023
16 https://doi.org/10.1016/s1470-2045(10)70172-8
17 https://doi.org/10.1074/jbc.270.14.8361
18 https://doi.org/10.1093/bioinformatics/btp324
19 https://doi.org/10.1093/bioinformatics/btv098
20 https://doi.org/10.1093/carcin/bgt375
21 https://doi.org/10.1093/nar/gkq603
22 https://doi.org/10.1111/bjh.12072
23 https://doi.org/10.1136/jmg.2005.033001
24 https://doi.org/10.1155/2013/181384
25 https://doi.org/10.1200/jco.2011.39.7901
26 https://doi.org/10.18632/oncotarget.4119
27 https://doi.org/10.18632/oncotarget.7757
28 https://doi.org/10.3349/ymj.2015.56.6.1461
29 https://doi.org/10.3390/ijms18030573
30 https://doi.org/10.3892/ijo.29.5.1127
31 https://doi.org/10.3892/mmr.2015.3970
32 https://doi.org/10.3892/or_00000814
33 https://doi.org/10.4161/epi.32089
34 https://doi.org/10.5858/arpa.2015-0261-sa
35 schema:datePublished 2018-11
36 schema:datePublishedReg 2018-11-01
37 schema:description A good pathologic response to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is associated with a better prognosis. However, there is no effective method to predict CRT response in LARC patients. Therefore, this study used whole-exome sequencing (WES) to identify novel biomarker predicting CRT benefit in LARC. Two independent tumor tissue sets were used to evaluate the genetic differences between the good CRT response group (15 patients achieved a pathologic complete response (pCR)) and the poor CRT response group (15 patients with pathologic stage III). After applying WES to the discovery set of 30 patients, additional samples (n = 67) were genotyped for candidate variants using TaqMan or Sanger sequencing for validation. Overall, this study included a total of 97 LARC patients. In the discovery and validation set, there was no known genetic mutation to predict response between two groups, while five candidate variants (BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were found to be significantly associated with pCR. In the dominant model, the GC/CC genotype of DLC1 rs3816748 (p = 0.032), AC/CC genotype of DNAH14 rs3105571 (p = 0.009), and TT genotype of RAET1 rs912565 (p < 0.0001) were associated with a higher pCR rate. In the recessive model, BCL2L10 rs2231292 (p = 0.036) and ITIH5 rs3824658 (p = 0.003) were significantly associated with pCR. In the co-dominant model, 4 candidate variants (DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were significantly correlated with pCR. However, none of the candidate variants was associated with relapse-free or overall survival. The present results suggest that genetic variations of the BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565 genes can be used as biomarkers predicting the CRT response for patients with LARC.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N3f706ae9c33d43eb8331b874d72fead8
42 N4767656e360046ba8fec870e280f2b14
43 sg:journal.1094524
44 schema:name Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer
45 schema:pagination 145
46 schema:productId N4f6df9f6596141e9bec42ae2e75d624e
47 N67b674e77d5a47adbaf04a8bd37132b7
48 N99aa4caf777a4095a741656707b02715
49 Nd188dc5236004ed5a98dcc98bba8cfe9
50 Nf18708ab45884667ab53ae8fa2df5fed
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106915467
52 https://doi.org/10.1007/s12032-018-1202-8
53 schema:sdDatePublished 2019-04-10T15:15
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N3150eccf470f4a6ca8dd23f00f9cd2e9
56 schema:url https://link.springer.com/10.1007%2Fs12032-018-1202-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N12b037cc40fb420c8914a2ad0c7accd0 rdf:first sg:person.01152011320.12
61 rdf:rest N8ec4c935147241a8944134cd433538b2
62 N144ca98e1bad4ba8b35cfede03d51cf7 rdf:first sg:person.01273042554.59
63 rdf:rest Na20b9e7ccd624b5b86adb5c229ee2507
64 N3150eccf470f4a6ca8dd23f00f9cd2e9 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N3f706ae9c33d43eb8331b874d72fead8 schema:volumeNumber 35
67 rdf:type schema:PublicationVolume
68 N4767656e360046ba8fec870e280f2b14 schema:issueNumber 11
69 rdf:type schema:PublicationIssue
70 N4cf6bdfea20643cc8d19528eba43e05d rdf:first sg:person.01100343463.16
71 rdf:rest Nc94f6bdac3814d579a5b4d344823fca5
72 N4f6df9f6596141e9bec42ae2e75d624e schema:name dimensions_id
73 schema:value pub.1106915467
74 rdf:type schema:PropertyValue
75 N67b674e77d5a47adbaf04a8bd37132b7 schema:name pubmed_id
76 schema:value 30206710
77 rdf:type schema:PropertyValue
78 N8ec4c935147241a8944134cd433538b2 rdf:first sg:person.0677676015.46
79 rdf:rest N4cf6bdfea20643cc8d19528eba43e05d
80 N99aa4caf777a4095a741656707b02715 schema:name readcube_id
81 schema:value b9c0722416f96e97e1903db3b29c531b9391e0adc214ec0bbd0f0b5760902ab4
82 rdf:type schema:PropertyValue
83 Na20b9e7ccd624b5b86adb5c229ee2507 rdf:first sg:person.01344476312.42
84 rdf:rest Ne061a911920a478ab9374e2b531fdd82
85 Nb3f20d75619144a2b01649f610482f20 rdf:first sg:person.015763170324.23
86 rdf:rest rdf:nil
87 Nc94f6bdac3814d579a5b4d344823fca5 rdf:first sg:person.01027453017.38
88 rdf:rest Nf3f04820de0f4d11ae89186299d074ff
89 Nd188dc5236004ed5a98dcc98bba8cfe9 schema:name nlm_unique_id
90 schema:value 9435512
91 rdf:type schema:PropertyValue
92 Nd83f24d46faf4515a66c29479d435c89 rdf:first sg:person.01357254566.65
93 rdf:rest Nb3f20d75619144a2b01649f610482f20
94 Ne061a911920a478ab9374e2b531fdd82 rdf:first sg:person.0616020740.93
95 rdf:rest Nd83f24d46faf4515a66c29479d435c89
96 Nf18708ab45884667ab53ae8fa2df5fed schema:name doi
97 schema:value 10.1007/s12032-018-1202-8
98 rdf:type schema:PropertyValue
99 Nf3f04820de0f4d11ae89186299d074ff rdf:first sg:person.01211121126.13
100 rdf:rest N144ca98e1bad4ba8b35cfede03d51cf7
101 Nf4c3bab3e31b4dd8b7cab875321b6244 rdf:first sg:person.01145413006.60
102 rdf:rest N12b037cc40fb420c8914a2ad0c7accd0
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
107 schema:name Oncology and Carcinogenesis
108 rdf:type schema:DefinedTerm
109 sg:grant.7475300 http://pending.schema.org/fundedItem sg:pub.10.1007/s12032-018-1202-8
110 rdf:type schema:MonetaryGrant
111 sg:journal.1094524 schema:issn 1357-0560
112 1559-131X
113 schema:name Medical Oncology
114 rdf:type schema:Periodical
115 sg:person.01027453017.38 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
116 schema:familyName Bae
117 schema:givenName Woo Kyun
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027453017.38
119 rdf:type schema:Person
120 sg:person.01100343463.16 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
121 schema:familyName Lee
122 schema:givenName Soo jung
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100343463.16
124 rdf:type schema:Person
125 sg:person.01145413006.60 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
126 schema:familyName Lee
127 schema:givenName In Hee
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145413006.60
129 rdf:type schema:Person
130 sg:person.01152011320.12 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
131 schema:familyName Kang
132 schema:givenName Keunsoo
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152011320.12
134 rdf:type schema:Person
135 sg:person.01211121126.13 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
136 schema:familyName Hwang
137 schema:givenName Jun Eul
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211121126.13
139 rdf:type schema:Person
140 sg:person.01273042554.59 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
141 schema:familyName Kim
142 schema:givenName Hye Jin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273042554.59
144 rdf:type schema:Person
145 sg:person.01344476312.42 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
146 schema:familyName Park
147 schema:givenName Su Yeon
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344476312.42
149 rdf:type schema:Person
150 sg:person.01357254566.65 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
151 schema:familyName Choi
152 schema:givenName Gyu Seog
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357254566.65
154 rdf:type schema:Person
155 sg:person.015763170324.23 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
156 schema:familyName Kim
157 schema:givenName Jong Gwang
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015763170324.23
159 rdf:type schema:Person
160 sg:person.0616020740.93 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
161 schema:familyName Park
162 schema:givenName Jun Seok
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616020740.93
164 rdf:type schema:Person
165 sg:person.0677676015.46 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
166 schema:familyName Kang
167 schema:givenName Byung Woog
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677676015.46
169 rdf:type schema:Person
170 sg:pub.10.1007/s00384-015-2231-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020922985
171 https://doi.org/10.1007/s00384-015-2231-9
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00432-010-0849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027191489
174 https://doi.org/10.1007/s00432-010-0849-0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature07086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032756706
177 https://doi.org/10.1038/nature07086
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
180 https://doi.org/10.1038/nbt.1754
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
183 https://doi.org/10.1038/nbt1486
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/sj.onc.1210669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003891366
186 https://doi.org/10.1038/sj.onc.1210669
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/s13058-015-0642-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019593802
189 https://doi.org/10.1186/s13058-015-0642-8
190 rdf:type schema:CreativeWork
191 sg:pub.10.1245/s10434-011-1740-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099908
192 https://doi.org/10.1245/s10434-011-1740-1
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/eji.200939502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016578271
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.clcc.2015.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041072009
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ijrobp.2012.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005347056
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ijrobp.2017.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084082472
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s1470-2045(10)70172-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007782854
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1074/jbc.270.14.8361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023698956
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/bioinformatics/btv098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832020
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/carcin/bgt375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053466380
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/bjh.12072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002098624
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1136/jmg.2005.033001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040543457
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1155/2013/181384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047748352
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1200/jco.2011.39.7901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041464806
221 rdf:type schema:CreativeWork
222 https://doi.org/10.18632/oncotarget.4119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025059219
223 rdf:type schema:CreativeWork
224 https://doi.org/10.18632/oncotarget.7757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048032678
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3349/ymj.2015.56.6.1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052137128
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3390/ijms18030573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084435869
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3892/ijo.29.5.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071516181
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3892/mmr.2015.3970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005922753
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3892/or_00000814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071537598
235 rdf:type schema:CreativeWork
236 https://doi.org/10.4161/epi.32089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072302874
237 rdf:type schema:CreativeWork
238 https://doi.org/10.5858/arpa.2015-0261-sa schema:sameAs https://app.dimensions.ai/details/publication/pub.1048002605
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.14005.30 schema:alternateName Chonnam National University
241 schema:name Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.258803.4 schema:alternateName Kyungpook National University
244 schema:name Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
245 Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.411982.7 schema:alternateName Dankook University
248 schema:name Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...