Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06-16

AUTHORS

Kang-jie Chen, Lin Zhou, Hai-yang Xie, Taki-Eldin Ahmed, Xiao-wen Feng, Shu-sen Zheng

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan–Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively. More... »

PAGES

1817-1826

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x

DOI

http://dx.doi.org/10.1007/s12032-011-0006-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001731688

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21678026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphocytes, Tumor-Infiltrating", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "T-Lymphocytes, Cytotoxic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "T-Lymphocytes, Regulatory", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kang-jie", 
        "id": "sg:person.0704374340.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704374340.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Lin", 
        "id": "sg:person.0753155421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753155421.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Hai-yang", 
        "id": "sg:person.0657720126.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657720126.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmed", 
        "givenName": "Taki-Eldin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xiao-wen", 
        "id": "sg:person.0641516167.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641516167.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Shu-sen", 
        "id": "sg:person.0640501242.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640501242.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012208897", 
          "https://doi.org/10.1038/nm1093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2003.07515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005650420", 
          "https://doi.org/10.1111/j.1572-0241.2003.07515.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289511", 
          "https://doi.org/10.1038/nri1806"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-16", 
    "datePublishedReg": "2011-06-16", 
    "description": "Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan\u2013Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P\u00a0=\u00a00.040) and peritumoral CTLs (P\u00a0=\u00a00.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P\u00a0=\u00a00.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P\u00a0=\u00a00.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P\u00a0=\u00a00.025) and increased tumor size (P\u00a0=\u00a00.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12032-011-0006-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094524", 
        "issn": [
          "1357-0560", 
          "1559-131X"
        ], 
        "name": "Medical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "tumor-infiltrating lymphocytes", 
      "disease-free survival", 
      "regulatory T cells", 
      "intratumoral Tregs", 
      "overall survival", 
      "T cells", 
      "HCC patients", 
      "negative independent prognostic factor", 
      "intratumoral regulatory T cells", 
      "prevalence of Tregs", 
      "analysis of Tregs", 
      "independent prognostic factor", 
      "Cox regression analysis", 
      "density of CD3", 
      "hepatocellular carcinoma patients", 
      "cytotoxic T cells", 
      "elimination of tumors", 
      "host immune response", 
      "better prognostic performance", 
      "TIL subsets", 
      "carcinoma patients", 
      "prognostic effect", 
      "prognostic factors", 
      "liver cirrhosis", 
      "prognostic value", 
      "tumor size", 
      "Kaplan-Meier", 
      "prognostic parameters", 
      "Tregs", 
      "immune response", 
      "prognostic performance", 
      "hepatocellular carcinoma", 
      "immune reactions", 
      "independent factors", 
      "tumor tissue", 
      "patients", 
      "CTL", 
      "tumor environment", 
      "CD8", 
      "resection", 
      "CD4", 
      "CD3", 
      "regression analysis", 
      "prognosis", 
      "CTLs", 
      "median value", 
      "survival", 
      "cells", 
      "Foxp3", 
      "cirrhosis", 
      "carcinoma", 
      "lymphocytes", 
      "immunohistochemistry", 
      "tumors", 
      "cancer", 
      "central role", 
      "prevalence", 
      "factors", 
      "tissue", 
      "aim", 
      "presence", 
      "cutoff", 
      "subset", 
      "response", 
      "combination", 
      "elimination", 
      "study", 
      "role", 
      "effect", 
      "analysis", 
      "values", 
      "high density", 
      "reaction", 
      "size", 
      "density", 
      "parameters", 
      "environment", 
      "performance"
    ], 
    "name": "Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection", 
    "pagination": "1817-1826", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001731688"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12032-011-0006-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21678026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12032-011-0006-x", 
      "https://app.dimensions.ai/details/publication/pub.1001731688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_542.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12032-011-0006-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      120 URIs      108 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12032-011-0006-x schema:about N0046f4f22390443f91681e1c879924e5
2 N203ec7b71e2442cab7f824b30ff42b21
3 N3feacd5a9259480a88f63485a69fa9f9
4 N61110cbdfcc34c9bbe052a2e849ea715
5 N626ff3cc2a7d4b6280ea66ee75f159f0
6 N6854e56cf4d444aea3cb23e180bb1ae3
7 N702736b24e5347798f1729ebedbdfa00
8 N76cb7ae18ec743b8992f3a0bc1f99377
9 N92769ea2d9da43619ddbb14637b771a2
10 N9862a5b690be44e2b08d144a3333dccb
11 Na0ab324876154f388bf28c4cf560bf0f
12 Na77efb881cd94457b2d9f221cce7151f
13 Nd9c302e06247490087aff9717bb0c674
14 anzsrc-for:11
15 anzsrc-for:1107
16 anzsrc-for:1112
17 schema:author Nf938db784e634ad49cdf8dc497343c39
18 schema:citation sg:pub.10.1038/nm1093
19 sg:pub.10.1038/nri1806
20 sg:pub.10.1111/j.1572-0241.2003.07515.x
21 schema:datePublished 2011-06-16
22 schema:datePublishedReg 2011-06-16
23 schema:description Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan–Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N0f0e86bf54c741169ab976323e7f7554
27 N17d4782feffa4e1cb138cc811fc7b9e0
28 sg:journal.1094524
29 schema:keywords CD3
30 CD4
31 CD8
32 CTL
33 CTLs
34 Cox regression analysis
35 Foxp3
36 HCC patients
37 Kaplan-Meier
38 T cells
39 TIL subsets
40 Tregs
41 aim
42 analysis
43 analysis of Tregs
44 better prognostic performance
45 cancer
46 carcinoma
47 carcinoma patients
48 cells
49 central role
50 cirrhosis
51 combination
52 cutoff
53 cytotoxic T cells
54 density
55 density of CD3
56 disease-free survival
57 effect
58 elimination
59 elimination of tumors
60 environment
61 factors
62 hepatocellular carcinoma
63 hepatocellular carcinoma patients
64 high density
65 host immune response
66 immune reactions
67 immune response
68 immunohistochemistry
69 independent factors
70 independent prognostic factor
71 intratumoral Tregs
72 intratumoral regulatory T cells
73 liver cirrhosis
74 lymphocytes
75 median value
76 negative independent prognostic factor
77 overall survival
78 parameters
79 patients
80 performance
81 presence
82 prevalence
83 prevalence of Tregs
84 prognosis
85 prognostic effect
86 prognostic factors
87 prognostic parameters
88 prognostic performance
89 prognostic value
90 reaction
91 regression analysis
92 regulatory T cells
93 resection
94 response
95 role
96 size
97 study
98 subset
99 survival
100 tissue
101 tumor environment
102 tumor size
103 tumor tissue
104 tumor-infiltrating lymphocytes
105 tumors
106 values
107 schema:name Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection
108 schema:pagination 1817-1826
109 schema:productId N8e70dfb829e34af98bc8350f2dc0234e
110 Nbef8ceb655034dd7ade7e123ae72b9c8
111 Nce879455c6b3426abf23f578aabbf091
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731688
113 https://doi.org/10.1007/s12032-011-0006-x
114 schema:sdDatePublished 2022-10-01T06:37
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher N3129e4ffc1264f348fecfc301bfda312
117 schema:url https://doi.org/10.1007/s12032-011-0006-x
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N0046f4f22390443f91681e1c879924e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Middle Aged
123 rdf:type schema:DefinedTerm
124 N0f0e86bf54c741169ab976323e7f7554 schema:issueNumber 3
125 rdf:type schema:PublicationIssue
126 N17d4782feffa4e1cb138cc811fc7b9e0 schema:volumeNumber 29
127 rdf:type schema:PublicationVolume
128 N203ec7b71e2442cab7f824b30ff42b21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Female
130 rdf:type schema:DefinedTerm
131 N3129e4ffc1264f348fecfc301bfda312 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N3feacd5a9259480a88f63485a69fa9f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Proportional Hazards Models
135 rdf:type schema:DefinedTerm
136 N500a0e1945da452d8542dec604a9b564 rdf:first sg:person.0641516167.70
137 rdf:rest N6ee432eed66642be8767d82011b0258f
138 N61110cbdfcc34c9bbe052a2e849ea715 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Humans
140 rdf:type schema:DefinedTerm
141 N626ff3cc2a7d4b6280ea66ee75f159f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Kaplan-Meier Estimate
143 rdf:type schema:DefinedTerm
144 N6854e56cf4d444aea3cb23e180bb1ae3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Prognosis
146 rdf:type schema:DefinedTerm
147 N6ee432eed66642be8767d82011b0258f rdf:first sg:person.0640501242.51
148 rdf:rest rdf:nil
149 N702736b24e5347798f1729ebedbdfa00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name T-Lymphocytes, Cytotoxic
151 rdf:type schema:DefinedTerm
152 N76cb7ae18ec743b8992f3a0bc1f99377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Carcinoma, Hepatocellular
154 rdf:type schema:DefinedTerm
155 N81ec549b7b5d4e9683741212848580e7 schema:affiliation grid-institutes:grid.13402.34
156 schema:familyName Ahmed
157 schema:givenName Taki-Eldin
158 rdf:type schema:Person
159 N8e70dfb829e34af98bc8350f2dc0234e schema:name pubmed_id
160 schema:value 21678026
161 rdf:type schema:PropertyValue
162 N918d8461534b4be6bdd6ec2b8b1001b6 rdf:first sg:person.0753155421.39
163 rdf:rest N9b91f0493d854264b8c9a7f2d5d104c1
164 N92769ea2d9da43619ddbb14637b771a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Adult
166 rdf:type schema:DefinedTerm
167 N9862a5b690be44e2b08d144a3333dccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Immunohistochemistry
169 rdf:type schema:DefinedTerm
170 N9b91f0493d854264b8c9a7f2d5d104c1 rdf:first sg:person.0657720126.04
171 rdf:rest Ne0532318ae894c7894c4dd1fa3993aef
172 Na0ab324876154f388bf28c4cf560bf0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Lymphocytes, Tumor-Infiltrating
174 rdf:type schema:DefinedTerm
175 Na77efb881cd94457b2d9f221cce7151f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name T-Lymphocytes, Regulatory
177 rdf:type schema:DefinedTerm
178 Nbef8ceb655034dd7ade7e123ae72b9c8 schema:name doi
179 schema:value 10.1007/s12032-011-0006-x
180 rdf:type schema:PropertyValue
181 Nce879455c6b3426abf23f578aabbf091 schema:name dimensions_id
182 schema:value pub.1001731688
183 rdf:type schema:PropertyValue
184 Nd9c302e06247490087aff9717bb0c674 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Liver Neoplasms
186 rdf:type schema:DefinedTerm
187 Ne0532318ae894c7894c4dd1fa3993aef rdf:first N81ec549b7b5d4e9683741212848580e7
188 rdf:rest N500a0e1945da452d8542dec604a9b564
189 Nf938db784e634ad49cdf8dc497343c39 rdf:first sg:person.0704374340.00
190 rdf:rest N918d8461534b4be6bdd6ec2b8b1001b6
191 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
192 schema:name Medical and Health Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
195 schema:name Immunology
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
198 schema:name Oncology and Carcinogenesis
199 rdf:type schema:DefinedTerm
200 sg:journal.1094524 schema:issn 1357-0560
201 1559-131X
202 schema:name Medical Oncology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.0640501242.51 schema:affiliation grid-institutes:grid.13402.34
206 schema:familyName Zheng
207 schema:givenName Shu-sen
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640501242.51
209 rdf:type schema:Person
210 sg:person.0641516167.70 schema:affiliation grid-institutes:grid.13402.34
211 schema:familyName Feng
212 schema:givenName Xiao-wen
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641516167.70
214 rdf:type schema:Person
215 sg:person.0657720126.04 schema:affiliation grid-institutes:grid.13402.34
216 schema:familyName Xie
217 schema:givenName Hai-yang
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657720126.04
219 rdf:type schema:Person
220 sg:person.0704374340.00 schema:affiliation grid-institutes:grid.13402.34
221 schema:familyName Chen
222 schema:givenName Kang-jie
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704374340.00
224 rdf:type schema:Person
225 sg:person.0753155421.39 schema:affiliation grid-institutes:grid.13402.34
226 schema:familyName Zhou
227 schema:givenName Lin
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753155421.39
229 rdf:type schema:Person
230 sg:pub.10.1038/nm1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012208897
231 https://doi.org/10.1038/nm1093
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nri1806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289511
234 https://doi.org/10.1038/nri1806
235 rdf:type schema:CreativeWork
236 sg:pub.10.1111/j.1572-0241.2003.07515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005650420
237 https://doi.org/10.1111/j.1572-0241.2003.07515.x
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.13402.34 schema:alternateName Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
240 schema:name Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...