Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06-16

AUTHORS

Kang-jie Chen, Lin Zhou, Hai-yang Xie, Taki-Eldin Ahmed, Xiao-wen Feng, Shu-sen Zheng

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan–Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively. More... »

PAGES

1817-1826

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x

DOI

http://dx.doi.org/10.1007/s12032-011-0006-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001731688

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21678026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphocytes, Tumor-Infiltrating", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "T-Lymphocytes, Cytotoxic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "T-Lymphocytes, Regulatory", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kang-jie", 
        "id": "sg:person.0704374340.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704374340.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Lin", 
        "id": "sg:person.0753155421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753155421.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Hai-yang", 
        "id": "sg:person.0657720126.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657720126.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmed", 
        "givenName": "Taki-Eldin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Xiao-wen", 
        "id": "sg:person.0641516167.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641516167.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Shu-sen", 
        "id": "sg:person.0640501242.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640501242.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1111/j.1572-0241.2003.07515.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005650420", 
          "https://doi.org/10.1111/j.1572-0241.2003.07515.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289511", 
          "https://doi.org/10.1038/nri1806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012208897", 
          "https://doi.org/10.1038/nm1093"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-16", 
    "datePublishedReg": "2011-06-16", 
    "description": "Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan\u2013Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P\u00a0=\u00a00.040) and peritumoral CTLs (P\u00a0=\u00a00.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P\u00a0=\u00a00.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P\u00a0=\u00a00.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P\u00a0=\u00a00.025) and increased tumor size (P\u00a0=\u00a00.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12032-011-0006-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094524", 
        "issn": [
          "1357-0560", 
          "1559-131X"
        ], 
        "name": "Medical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "tumor-infiltrating lymphocytes", 
      "disease-free survival", 
      "regulatory T cells", 
      "intratumoral Tregs", 
      "overall survival", 
      "T cells", 
      "HCC patients", 
      "negative independent prognostic factor", 
      "intratumoral regulatory T cells", 
      "prevalence of Tregs", 
      "analysis of Tregs", 
      "independent prognostic factor", 
      "Cox regression analysis", 
      "density of CD3", 
      "hepatocellular carcinoma patients", 
      "cytotoxic T cells", 
      "elimination of tumors", 
      "host immune response", 
      "better prognostic performance", 
      "TIL subsets", 
      "carcinoma patients", 
      "prognostic effect", 
      "prognostic factors", 
      "liver cirrhosis", 
      "prognostic value", 
      "tumor size", 
      "Kaplan-Meier", 
      "prognostic parameters", 
      "Tregs", 
      "immune response", 
      "prognostic performance", 
      "hepatocellular carcinoma", 
      "immune reactions", 
      "independent factors", 
      "tumor tissue", 
      "patients", 
      "CTL", 
      "tumor environment", 
      "CD8", 
      "resection", 
      "CD4", 
      "CD3", 
      "regression analysis", 
      "prognosis", 
      "CTLs", 
      "median value", 
      "survival", 
      "cells", 
      "Foxp3", 
      "cirrhosis", 
      "carcinoma", 
      "lymphocytes", 
      "immunohistochemistry", 
      "tumors", 
      "cancer", 
      "central role", 
      "prevalence", 
      "factors", 
      "tissue", 
      "aim", 
      "presence", 
      "cutoff", 
      "subset", 
      "response", 
      "combination", 
      "elimination", 
      "study", 
      "role", 
      "effect", 
      "analysis", 
      "values", 
      "high density", 
      "reaction", 
      "size", 
      "density", 
      "parameters", 
      "environment", 
      "performance"
    ], 
    "name": "Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection", 
    "pagination": "1817-1826", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001731688"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12032-011-0006-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21678026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12032-011-0006-x", 
      "https://app.dimensions.ai/details/publication/pub.1001731688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12032-011-0006-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12032-011-0006-x'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      120 URIs      108 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12032-011-0006-x schema:about N1c0f97ff439242c2b8286bc9ab2d3af7
2 N2f335a1ce3cb458d99c91e754a449afe
3 N4e66a69a55194c0191b5f45aff8750c6
4 N742479644ff34326b370725bd9f17f10
5 N829715b72bbc42c09427e3bfb5bbfbbd
6 N84ae3c3259974361bd4fb463fdfc43c9
7 N8ae05cc54eff4b7282a9288ef712436e
8 N949f3df600294fd1ac31f7696663e8d1
9 Na1d0f0c70c104dbd9c473be90de0a0f2
10 Nacd5e606440a462d98df81f8c622b539
11 Nc6139ce5205d43ce81c318f87d8cad48
12 Ndb2ae3f7b0414bdb98843246898a40ae
13 Nea8455271983488f9a489ce5ace1ff64
14 anzsrc-for:11
15 anzsrc-for:1107
16 anzsrc-for:1112
17 schema:author Nef55afa885834e849c250ecc86eb9a22
18 schema:citation sg:pub.10.1038/nm1093
19 sg:pub.10.1038/nri1806
20 sg:pub.10.1111/j.1572-0241.2003.07515.x
21 schema:datePublished 2011-06-16
22 schema:datePublishedReg 2011-06-16
23 schema:description Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8+ cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3+, CD4+, CD8+, and FoxP3+ TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan–Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3+ and CD4+ TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N5d04908b50594ff5a0c17e004e3a5501
27 Nf15d2d2107ce49a4bfc033abb3a9c3c7
28 sg:journal.1094524
29 schema:keywords CD3
30 CD4
31 CD8
32 CTL
33 CTLs
34 Cox regression analysis
35 Foxp3
36 HCC patients
37 Kaplan-Meier
38 T cells
39 TIL subsets
40 Tregs
41 aim
42 analysis
43 analysis of Tregs
44 better prognostic performance
45 cancer
46 carcinoma
47 carcinoma patients
48 cells
49 central role
50 cirrhosis
51 combination
52 cutoff
53 cytotoxic T cells
54 density
55 density of CD3
56 disease-free survival
57 effect
58 elimination
59 elimination of tumors
60 environment
61 factors
62 hepatocellular carcinoma
63 hepatocellular carcinoma patients
64 high density
65 host immune response
66 immune reactions
67 immune response
68 immunohistochemistry
69 independent factors
70 independent prognostic factor
71 intratumoral Tregs
72 intratumoral regulatory T cells
73 liver cirrhosis
74 lymphocytes
75 median value
76 negative independent prognostic factor
77 overall survival
78 parameters
79 patients
80 performance
81 presence
82 prevalence
83 prevalence of Tregs
84 prognosis
85 prognostic effect
86 prognostic factors
87 prognostic parameters
88 prognostic performance
89 prognostic value
90 reaction
91 regression analysis
92 regulatory T cells
93 resection
94 response
95 role
96 size
97 study
98 subset
99 survival
100 tissue
101 tumor environment
102 tumor size
103 tumor tissue
104 tumor-infiltrating lymphocytes
105 tumors
106 values
107 schema:name Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection
108 schema:pagination 1817-1826
109 schema:productId Nbf823162cc584c609e8f267c2eb893b4
110 Nf2187fcdd6ee4e369a435fc9c72fd05d
111 Nf442c450739f472bb46448b1dbec97b3
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731688
113 https://doi.org/10.1007/s12032-011-0006-x
114 schema:sdDatePublished 2022-11-24T20:55
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Ne671888eccd4438cb836bd5f1d0ad360
117 schema:url https://doi.org/10.1007/s12032-011-0006-x
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N19d3879757444759a5b3442185df12d3 schema:affiliation grid-institutes:grid.13402.34
122 schema:familyName Ahmed
123 schema:givenName Taki-Eldin
124 rdf:type schema:Person
125 N1c0f97ff439242c2b8286bc9ab2d3af7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Prognosis
127 rdf:type schema:DefinedTerm
128 N2f335a1ce3cb458d99c91e754a449afe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Lymphocytes, Tumor-Infiltrating
130 rdf:type schema:DefinedTerm
131 N3357b22349da47928ba90ed600125477 rdf:first N19d3879757444759a5b3442185df12d3
132 rdf:rest N80f3c3f45e4547d5aa4404f02c803be3
133 N4e66a69a55194c0191b5f45aff8750c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Immunohistochemistry
135 rdf:type schema:DefinedTerm
136 N56b15ecd30d34a17b7f70bd1dc7473da rdf:first sg:person.0657720126.04
137 rdf:rest N3357b22349da47928ba90ed600125477
138 N5d04908b50594ff5a0c17e004e3a5501 schema:issueNumber 3
139 rdf:type schema:PublicationIssue
140 N742479644ff34326b370725bd9f17f10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name T-Lymphocytes, Cytotoxic
142 rdf:type schema:DefinedTerm
143 N7be2e05dd2f64275bb21fdb0c6f4c83f rdf:first sg:person.0753155421.39
144 rdf:rest N56b15ecd30d34a17b7f70bd1dc7473da
145 N80f3c3f45e4547d5aa4404f02c803be3 rdf:first sg:person.0641516167.70
146 rdf:rest Nd0036884b5704ed6b5c5612e1b091076
147 N829715b72bbc42c09427e3bfb5bbfbbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Carcinoma, Hepatocellular
149 rdf:type schema:DefinedTerm
150 N84ae3c3259974361bd4fb463fdfc43c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Kaplan-Meier Estimate
152 rdf:type schema:DefinedTerm
153 N8ae05cc54eff4b7282a9288ef712436e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name T-Lymphocytes, Regulatory
155 rdf:type schema:DefinedTerm
156 N949f3df600294fd1ac31f7696663e8d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Humans
158 rdf:type schema:DefinedTerm
159 Na1d0f0c70c104dbd9c473be90de0a0f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Adult
161 rdf:type schema:DefinedTerm
162 Nacd5e606440a462d98df81f8c622b539 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Middle Aged
164 rdf:type schema:DefinedTerm
165 Nbf823162cc584c609e8f267c2eb893b4 schema:name dimensions_id
166 schema:value pub.1001731688
167 rdf:type schema:PropertyValue
168 Nc6139ce5205d43ce81c318f87d8cad48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Liver Neoplasms
170 rdf:type schema:DefinedTerm
171 Nd0036884b5704ed6b5c5612e1b091076 rdf:first sg:person.0640501242.51
172 rdf:rest rdf:nil
173 Ndb2ae3f7b0414bdb98843246898a40ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Female
175 rdf:type schema:DefinedTerm
176 Ne671888eccd4438cb836bd5f1d0ad360 schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 Nea8455271983488f9a489ce5ace1ff64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Proportional Hazards Models
180 rdf:type schema:DefinedTerm
181 Nef55afa885834e849c250ecc86eb9a22 rdf:first sg:person.0704374340.00
182 rdf:rest N7be2e05dd2f64275bb21fdb0c6f4c83f
183 Nf15d2d2107ce49a4bfc033abb3a9c3c7 schema:volumeNumber 29
184 rdf:type schema:PublicationVolume
185 Nf2187fcdd6ee4e369a435fc9c72fd05d schema:name pubmed_id
186 schema:value 21678026
187 rdf:type schema:PropertyValue
188 Nf442c450739f472bb46448b1dbec97b3 schema:name doi
189 schema:value 10.1007/s12032-011-0006-x
190 rdf:type schema:PropertyValue
191 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
192 schema:name Medical and Health Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
195 schema:name Immunology
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
198 schema:name Oncology and Carcinogenesis
199 rdf:type schema:DefinedTerm
200 sg:journal.1094524 schema:issn 1357-0560
201 1559-131X
202 schema:name Medical Oncology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.0640501242.51 schema:affiliation grid-institutes:grid.13402.34
206 schema:familyName Zheng
207 schema:givenName Shu-sen
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640501242.51
209 rdf:type schema:Person
210 sg:person.0641516167.70 schema:affiliation grid-institutes:grid.13402.34
211 schema:familyName Feng
212 schema:givenName Xiao-wen
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641516167.70
214 rdf:type schema:Person
215 sg:person.0657720126.04 schema:affiliation grid-institutes:grid.13402.34
216 schema:familyName Xie
217 schema:givenName Hai-yang
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657720126.04
219 rdf:type schema:Person
220 sg:person.0704374340.00 schema:affiliation grid-institutes:grid.13402.34
221 schema:familyName Chen
222 schema:givenName Kang-jie
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704374340.00
224 rdf:type schema:Person
225 sg:person.0753155421.39 schema:affiliation grid-institutes:grid.13402.34
226 schema:familyName Zhou
227 schema:givenName Lin
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753155421.39
229 rdf:type schema:Person
230 sg:pub.10.1038/nm1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012208897
231 https://doi.org/10.1038/nm1093
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nri1806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289511
234 https://doi.org/10.1038/nri1806
235 rdf:type schema:CreativeWork
236 sg:pub.10.1111/j.1572-0241.2003.07515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005650420
237 https://doi.org/10.1111/j.1572-0241.2003.07515.x
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.13402.34 schema:alternateName Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
240 schema:name Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...