Ontology type: schema:ScholarlyArticle
2009-09-16
AUTHORSNilda Vanesa Ayala-Núñez, Humberto H. Lara Villegas, Liliana del Carmen Ixtepan Turrent, Cristina Rodríguez Padilla
ABSTRACTSilver nanoparticles, which are being used increasingly as antimicrobial agents, may extend its antibacterial application to methicillin-resistant Staphylococcus aureus (MRSA), the main cause of nosocomial infections worldwide. To explore the antibacterial properties of silver nanoparticles against MRSA, the present work includes an analysis of the relation between nanosilver effect and MRSA’s resistance mechanisms, a study of the size dependence of the bactericidal activity of nanosilver and a toxicity assessment of nanoparticles against epithelial human cells. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of silver nanoparticles were quantified by using a luciferase-based assay. The cytotoxic effect (CC50 and CC90) of three different nanosilver sizes (10, 30–40, and 100 nm) were assessed in HeLa cells by a similar method. The therapeutic index was used as an indicator of nanosilver overall efficacy and safety. Silver nanoparticles inhibited bacterial growth of both MRSA and non-MR S. aureus in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio ≤ 4). Silver nanoparticle’s therapeutic index varied when nanoparticle’s size diminished. At the same dose range, 10 nm nanoparticles were the most effective since they did not affect HeLa’s cell viability while inhibiting a considerable percentage of MRSA growth. Silver nanoparticles are effective bactericidal agents that are not affected by drug-resistant mechanisms of MRSA. Nanosilver size mediates MRSA inhibition and the cytotoxicity to human cells, being smaller nanoparticles the ones with a better antibacterial activity and nontoxic effect. More... »
PAGES2-9
http://scigraph.springernature.com/pub.10.1007/s12030-009-9029-1
DOIhttp://dx.doi.org/10.1007/s12030-009-9029-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020569270
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Nanotechnology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico",
"id": "http://www.grid.ac/institutes/grid.411455.0",
"name": [
"Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico"
],
"type": "Organization"
},
"familyName": "Ayala-N\u00fa\u00f1ez",
"givenName": "Nilda Vanesa",
"id": "sg:person.0670067601.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670067601.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico",
"id": "http://www.grid.ac/institutes/grid.411455.0",
"name": [
"Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico"
],
"type": "Organization"
},
"familyName": "Lara Villegas",
"givenName": "Humberto H.",
"id": "sg:person.0617403313.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617403313.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico",
"id": "http://www.grid.ac/institutes/grid.411455.0",
"name": [
"Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico"
],
"type": "Organization"
},
"familyName": "del Carmen Ixtepan Turrent",
"givenName": "Liliana",
"id": "sg:person.015702035023.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015702035023.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico",
"id": "http://www.grid.ac/institutes/grid.411455.0",
"name": [
"Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico"
],
"type": "Organization"
},
"familyName": "Rodr\u00edguez Padilla",
"givenName": "Cristina",
"id": "sg:person.01155602521.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155602521.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-59745-468-1_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030768709",
"https://doi.org/10.1007/978-1-59745-468-1_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2180-7-101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044530322",
"https://doi.org/10.1186/1471-2180-7-101"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1477-3155-3-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006786501",
"https://doi.org/10.1186/1477-3155-3-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-09-16",
"datePublishedReg": "2009-09-16",
"description": "Silver nanoparticles, which are being used increasingly as antimicrobial agents, may extend its antibacterial application to methicillin-resistant Staphylococcus aureus (MRSA), the main cause of nosocomial infections worldwide. To explore the antibacterial properties of silver nanoparticles against MRSA, the present work includes an analysis of the relation between nanosilver effect and MRSA\u2019s resistance mechanisms, a study of the size dependence of the bactericidal activity of nanosilver and a toxicity assessment of nanoparticles against epithelial human cells. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of silver nanoparticles were quantified by using a luciferase-based assay. The cytotoxic effect (CC50 and CC90) of three different nanosilver sizes (10, 30\u201340, and 100\u00a0nm) were assessed in HeLa cells by a similar method. The therapeutic index was used as an indicator of nanosilver overall efficacy and safety. Silver nanoparticles inhibited bacterial growth of both MRSA and non-MR S. aureus in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio\u2009\u2264\u20094). Silver nanoparticle\u2019s therapeutic index varied when nanoparticle\u2019s size diminished. At the same dose range, 10\u00a0nm nanoparticles were the most effective since they did not affect HeLa\u2019s cell viability while inhibiting a considerable percentage of MRSA growth. Silver nanoparticles are effective bactericidal agents that are not affected by drug-resistant mechanisms of MRSA. Nanosilver size mediates MRSA inhibition and the cytotoxicity to human cells, being smaller nanoparticles the ones with a better antibacterial activity and nontoxic effect.",
"genre": "article",
"id": "sg:pub.10.1007/s12030-009-9029-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1034468",
"issn": [
"1551-1286",
"1551-1294"
],
"name": "NanoBiotechnology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "5"
}
],
"keywords": [
"silver nanoparticles",
"silver nanoparticle toxicity",
"epithelial human cells",
"nanoparticle size",
"small nanoparticles",
"minimum bactericidal concentration",
"antibacterial applications",
"nanoparticle toxicity",
"nanoparticles",
"effective bactericidal agent",
"good antibacterial activity",
"nanosilver effect",
"methicillin-resistant Staphylococcus aureus",
"HeLa cell viability",
"MRSA inhibition",
"antibacterial properties",
"MR S. aureus",
"bacteriostatic manner",
"antibacterial activity",
"bactericidal agents",
"therapeutic index",
"cell viability",
"MBC/MIC ratio",
"size dependence",
"minimum inhibitory concentration",
"nontoxic effect",
"nanoscale",
"toxicity assessment",
"nanosilver",
"bactericidal concentration",
"human cells",
"bactericidal effect",
"same dose range",
"Staphylococcus aureus",
"HeLa cells",
"luciferase-based assay",
"size",
"resistance mechanisms",
"MIC ratio",
"nosocomial infections",
"drug-resistant mechanism",
"MRSA growth",
"overall efficacy",
"present work",
"dose range",
"bacterial growth",
"bactericidal activity",
"inhibitory concentration",
"cytotoxic effects",
"antimicrobial agents",
"applications",
"considerable percentage",
"aureus",
"main cause",
"cells",
"cytotoxicity",
"properties",
"similar methods",
"bactericidal",
"assays",
"concentration",
"agents",
"range",
"infection",
"growth",
"efficacy",
"index",
"viability",
"effect",
"activity",
"work",
"inhibition",
"cause",
"toxicity",
"method",
"safety",
"ratio",
"mechanism",
"percentage",
"assessment",
"study",
"manner",
"indicators",
"one",
"dependence",
"analysis",
"relation"
],
"name": "Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter",
"pagination": "2-9",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020569270"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12030-009-9029-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12030-009-9029-1",
"https://app.dimensions.ai/details/publication/pub.1020569270"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_496.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12030-009-9029-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12030-009-9029-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12030-009-9029-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12030-009-9029-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12030-009-9029-1'
This table displays all metadata directly associated to this object as RDF triples.
178 TRIPLES
22 PREDICATES
115 URIs
104 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12030-009-9029-1 | schema:about | anzsrc-for:10 |
2 | ″ | ″ | anzsrc-for:1007 |
3 | ″ | schema:author | Nb3abbbc451ce45fba2eab84e006bd973 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-59745-468-1_1 |
5 | ″ | ″ | sg:pub.10.1186/1471-2180-7-101 |
6 | ″ | ″ | sg:pub.10.1186/1477-3155-3-6 |
7 | ″ | schema:datePublished | 2009-09-16 |
8 | ″ | schema:datePublishedReg | 2009-09-16 |
9 | ″ | schema:description | Silver nanoparticles, which are being used increasingly as antimicrobial agents, may extend its antibacterial application to methicillin-resistant Staphylococcus aureus (MRSA), the main cause of nosocomial infections worldwide. To explore the antibacterial properties of silver nanoparticles against MRSA, the present work includes an analysis of the relation between nanosilver effect and MRSA’s resistance mechanisms, a study of the size dependence of the bactericidal activity of nanosilver and a toxicity assessment of nanoparticles against epithelial human cells. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of silver nanoparticles were quantified by using a luciferase-based assay. The cytotoxic effect (CC50 and CC90) of three different nanosilver sizes (10, 30–40, and 100 nm) were assessed in HeLa cells by a similar method. The therapeutic index was used as an indicator of nanosilver overall efficacy and safety. Silver nanoparticles inhibited bacterial growth of both MRSA and non-MR S. aureus in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio ≤ 4). Silver nanoparticle’s therapeutic index varied when nanoparticle’s size diminished. At the same dose range, 10 nm nanoparticles were the most effective since they did not affect HeLa’s cell viability while inhibiting a considerable percentage of MRSA growth. Silver nanoparticles are effective bactericidal agents that are not affected by drug-resistant mechanisms of MRSA. Nanosilver size mediates MRSA inhibition and the cytotoxicity to human cells, being smaller nanoparticles the ones with a better antibacterial activity and nontoxic effect. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N64054cab4c2241f78a33bfc6383e908d |
14 | ″ | ″ | Nacded40cdcbb40f88d870cc424e4e5ba |
15 | ″ | ″ | sg:journal.1034468 |
16 | ″ | schema:keywords | HeLa cell viability |
17 | ″ | ″ | HeLa cells |
18 | ″ | ″ | MBC/MIC ratio |
19 | ″ | ″ | MIC ratio |
20 | ″ | ″ | MR S. aureus |
21 | ″ | ″ | MRSA growth |
22 | ″ | ″ | MRSA inhibition |
23 | ″ | ″ | Staphylococcus aureus |
24 | ″ | ″ | activity |
25 | ″ | ″ | agents |
26 | ″ | ″ | analysis |
27 | ″ | ″ | antibacterial activity |
28 | ″ | ″ | antibacterial applications |
29 | ″ | ″ | antibacterial properties |
30 | ″ | ″ | antimicrobial agents |
31 | ″ | ″ | applications |
32 | ″ | ″ | assays |
33 | ″ | ″ | assessment |
34 | ″ | ″ | aureus |
35 | ″ | ″ | bacterial growth |
36 | ″ | ″ | bactericidal |
37 | ″ | ″ | bactericidal activity |
38 | ″ | ″ | bactericidal agents |
39 | ″ | ″ | bactericidal concentration |
40 | ″ | ″ | bactericidal effect |
41 | ″ | ″ | bacteriostatic manner |
42 | ″ | ″ | cause |
43 | ″ | ″ | cell viability |
44 | ″ | ″ | cells |
45 | ″ | ″ | concentration |
46 | ″ | ″ | considerable percentage |
47 | ″ | ″ | cytotoxic effects |
48 | ″ | ″ | cytotoxicity |
49 | ″ | ″ | dependence |
50 | ″ | ″ | dose range |
51 | ″ | ″ | drug-resistant mechanism |
52 | ″ | ″ | effect |
53 | ″ | ″ | effective bactericidal agent |
54 | ″ | ″ | efficacy |
55 | ″ | ″ | epithelial human cells |
56 | ″ | ″ | good antibacterial activity |
57 | ″ | ″ | growth |
58 | ″ | ″ | human cells |
59 | ″ | ″ | index |
60 | ″ | ″ | indicators |
61 | ″ | ″ | infection |
62 | ″ | ″ | inhibition |
63 | ″ | ″ | inhibitory concentration |
64 | ″ | ″ | luciferase-based assay |
65 | ″ | ″ | main cause |
66 | ″ | ″ | manner |
67 | ″ | ″ | mechanism |
68 | ″ | ″ | methicillin-resistant Staphylococcus aureus |
69 | ″ | ″ | method |
70 | ″ | ″ | minimum bactericidal concentration |
71 | ″ | ″ | minimum inhibitory concentration |
72 | ″ | ″ | nanoparticle size |
73 | ″ | ″ | nanoparticle toxicity |
74 | ″ | ″ | nanoparticles |
75 | ″ | ″ | nanoscale |
76 | ″ | ″ | nanosilver |
77 | ″ | ″ | nanosilver effect |
78 | ″ | ″ | nontoxic effect |
79 | ″ | ″ | nosocomial infections |
80 | ″ | ″ | one |
81 | ″ | ″ | overall efficacy |
82 | ″ | ″ | percentage |
83 | ″ | ″ | present work |
84 | ″ | ″ | properties |
85 | ″ | ″ | range |
86 | ″ | ″ | ratio |
87 | ″ | ″ | relation |
88 | ″ | ″ | resistance mechanisms |
89 | ″ | ″ | safety |
90 | ″ | ″ | same dose range |
91 | ″ | ″ | silver nanoparticle toxicity |
92 | ″ | ″ | silver nanoparticles |
93 | ″ | ″ | similar methods |
94 | ″ | ″ | size |
95 | ″ | ″ | size dependence |
96 | ″ | ″ | small nanoparticles |
97 | ″ | ″ | study |
98 | ″ | ″ | therapeutic index |
99 | ″ | ″ | toxicity |
100 | ″ | ″ | toxicity assessment |
101 | ″ | ″ | viability |
102 | ″ | ″ | work |
103 | ″ | schema:name | Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter |
104 | ″ | schema:pagination | 2-9 |
105 | ″ | schema:productId | N8feb1431c01d4c148ddaeaa9278dabbf |
106 | ″ | ″ | N9c007585046b4455b86b09e9337ee90e |
107 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020569270 |
108 | ″ | ″ | https://doi.org/10.1007/s12030-009-9029-1 |
109 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
110 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
111 | ″ | schema:sdPublisher | N6c54e0159ed84fd69b682fb095382609 |
112 | ″ | schema:url | https://doi.org/10.1007/s12030-009-9029-1 |
113 | ″ | sgo:license | sg:explorer/license/ |
114 | ″ | sgo:sdDataset | articles |
115 | ″ | rdf:type | schema:ScholarlyArticle |
116 | N1c52f19d8cbe439e8d59b1a96948073a | rdf:first | sg:person.015702035023.61 |
117 | ″ | rdf:rest | Nad28b11777384708a4febdce18eb9476 |
118 | N64054cab4c2241f78a33bfc6383e908d | schema:issueNumber | 1-4 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | N6c54e0159ed84fd69b682fb095382609 | schema:name | Springer Nature - SN SciGraph project |
121 | ″ | rdf:type | schema:Organization |
122 | N8feb1431c01d4c148ddaeaa9278dabbf | schema:name | dimensions_id |
123 | ″ | schema:value | pub.1020569270 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | N9c007585046b4455b86b09e9337ee90e | schema:name | doi |
126 | ″ | schema:value | 10.1007/s12030-009-9029-1 |
127 | ″ | rdf:type | schema:PropertyValue |
128 | Nacded40cdcbb40f88d870cc424e4e5ba | schema:volumeNumber | 5 |
129 | ″ | rdf:type | schema:PublicationVolume |
130 | Nad28b11777384708a4febdce18eb9476 | rdf:first | sg:person.01155602521.42 |
131 | ″ | rdf:rest | rdf:nil |
132 | Nb3abbbc451ce45fba2eab84e006bd973 | rdf:first | sg:person.0670067601.58 |
133 | ″ | rdf:rest | Nd6969c93f91a45b5bd1a1f5206d20094 |
134 | Nd6969c93f91a45b5bd1a1f5206d20094 | rdf:first | sg:person.0617403313.23 |
135 | ″ | rdf:rest | N1c52f19d8cbe439e8d59b1a96948073a |
136 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Technology |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | anzsrc-for:1007 | schema:inDefinedTermSet | anzsrc-for: |
140 | ″ | schema:name | Nanotechnology |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | sg:journal.1034468 | schema:issn | 1551-1286 |
143 | ″ | ″ | 1551-1294 |
144 | ″ | schema:name | NanoBiotechnology |
145 | ″ | schema:publisher | Springer Nature |
146 | ″ | rdf:type | schema:Periodical |
147 | sg:person.01155602521.42 | schema:affiliation | grid-institutes:grid.411455.0 |
148 | ″ | schema:familyName | Rodríguez Padilla |
149 | ″ | schema:givenName | Cristina |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155602521.42 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.015702035023.61 | schema:affiliation | grid-institutes:grid.411455.0 |
153 | ″ | schema:familyName | del Carmen Ixtepan Turrent |
154 | ″ | schema:givenName | Liliana |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015702035023.61 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.0617403313.23 | schema:affiliation | grid-institutes:grid.411455.0 |
158 | ″ | schema:familyName | Lara Villegas |
159 | ″ | schema:givenName | Humberto H. |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617403313.23 |
161 | ″ | rdf:type | schema:Person |
162 | sg:person.0670067601.58 | schema:affiliation | grid-institutes:grid.411455.0 |
163 | ″ | schema:familyName | Ayala-Núñez |
164 | ″ | schema:givenName | Nilda Vanesa |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670067601.58 |
166 | ″ | rdf:type | schema:Person |
167 | sg:pub.10.1007/978-1-59745-468-1_1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030768709 |
168 | ″ | ″ | https://doi.org/10.1007/978-1-59745-468-1_1 |
169 | ″ | rdf:type | schema:CreativeWork |
170 | sg:pub.10.1186/1471-2180-7-101 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044530322 |
171 | ″ | ″ | https://doi.org/10.1186/1471-2180-7-101 |
172 | ″ | rdf:type | schema:CreativeWork |
173 | sg:pub.10.1186/1477-3155-3-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006786501 |
174 | ″ | ″ | https://doi.org/10.1186/1477-3155-3-6 |
175 | ″ | rdf:type | schema:CreativeWork |
176 | grid-institutes:grid.411455.0 | schema:alternateName | Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico |
177 | ″ | schema:name | Immunology and Virology Laboratory, Universidad Autonoma de Nuevo Leon, Edificio C, 3er piso, Facultad de Ciencias Biologicas, Ave. Pedro de Alba S/N, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon, Mexico |
178 | ″ | rdf:type | schema:Organization |