Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Anuj Dhawan, Michael Gerhold, Tuan Vo-Dinh

ABSTRACT

This paper describes the fabrication of gold nanopillar and nanorod arrays and theoretical calculations of electromagnetic fields (EMFs) around ordered arrangements of these nanostructures. The EMFs of both single nanopillars and dimers of nanopillars—having nanoscale gaps between the two adjacent nanopillars forming the dimers—are simulated in this work by employing the finite-difference time-domain method. In the case of simulations for dimers of nanopillars, the nanoscale gaps between the nanopillars are varied between 5 and 20 nm, and calculations of the electromagnetic fields in the vicinity of the nanopillars and in the gaps between the nanopillars were carried out. Fabrication of gold nanopillars in a controlled manner for forming SERS substrates involves focused ion beam (FIB) milling. The nanostructures were fabricated on gold-coated silica, mica, and quartz planar substrates as well as on gold-coated tips of four mode and multimode silica optical fibers. More... »

PAGES

164-171

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12030-008-9017-x

DOI

http://dx.doi.org/10.1007/s12030-008-9017-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039282251

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23976888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "US Army Research Office, Research Triangle Park, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.507553.1", 
          "name": [
            "Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA", 
            "US Army Research Office, Research Triangle Park, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhawan", 
        "givenName": "Anuj", 
        "id": "sg:person.01353431112.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353431112.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Army Research Office, Research Triangle Park, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.507553.1", 
          "name": [
            "US Army Research Office, Research Triangle Park, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerhold", 
        "givenName": "Michael", 
        "id": "sg:person.016323464061.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323464061.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vo-Dinh", 
        "givenName": "Tuan", 
        "id": "sg:person.01267242131.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267242131.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00216-004-2708-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043589904", 
          "https://doi.org/10.1007/s00216-004-2708-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0048317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085164077", 
          "https://doi.org/10.1007/bfb0048317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-006-0559-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007937510", 
          "https://doi.org/10.1007/s00216-006-0559-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "This paper describes the fabrication of gold nanopillar and nanorod arrays and theoretical calculations of electromagnetic fields (EMFs) around ordered arrangements of these nanostructures. The EMFs of both single nanopillars and dimers of nanopillars\u2014having nanoscale gaps between the two adjacent nanopillars forming the dimers\u2014are simulated in this work by employing the finite-difference time-domain method. In the case of simulations for dimers of nanopillars, the nanoscale gaps between the nanopillars are varied between 5 and 20\u00a0nm, and calculations of the electromagnetic fields in the vicinity of the nanopillars and in the gaps between the nanopillars were carried out. Fabrication of gold nanopillars in a controlled manner for forming SERS substrates involves focused ion beam (FIB) milling. The nanostructures were fabricated on gold-coated silica, mica, and quartz planar substrates as well as on gold-coated tips of four mode and multimode silica optical fibers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12030-008-9017-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2503812", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2501701", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034468", 
        "issn": [
          "1551-1286", 
          "1551-1294"
        ], 
        "name": "NanoBiotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "electromagnetic field", 
      "gold nanopillars", 
      "Focused Ion Beam Fabrication", 
      "multimode silica optical fibers", 
      "ion beam fabrication", 
      "gold-coated silica", 
      "finite-difference time-domain method", 
      "silica optical fibers", 
      "gold-coated tip", 
      "time-domain method", 
      "gold nanostructures", 
      "adjacent nanopillars", 
      "nanoscale gaps", 
      "beam fabrication", 
      "nanorod arrays", 
      "single nanopillars", 
      "beam milling", 
      "optical fiber", 
      "SERS substrates", 
      "nanopillars", 
      "nanostructures", 
      "planar substrates", 
      "Raman scattering", 
      "theoretical simulations", 
      "fabrication", 
      "theoretical calculations", 
      "case of simulation", 
      "calculations", 
      "nanoscale", 
      "substrate", 
      "scattering", 
      "field", 
      "simulations", 
      "silica", 
      "gap", 
      "milling", 
      "array", 
      "dimer", 
      "vicinity", 
      "fibers", 
      "mode", 
      "surface", 
      "tip", 
      "mica", 
      "paper", 
      "work", 
      "arrangement", 
      "method", 
      "manner", 
      "cases"
    ], 
    "name": "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)", 
    "pagination": "164-171", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039282251"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12030-008-9017-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23976888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12030-008-9017-x", 
      "https://app.dimensions.ai/details/publication/pub.1039282251"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_443.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12030-008-9017-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9017-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9017-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9017-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9017-x'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      80 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12030-008-9017-x schema:about anzsrc-for:03
2 anzsrc-for:10
3 schema:author Ne80b06ab47e449fc8a18e49e7199ab1e
4 schema:citation sg:pub.10.1007/bfb0048317
5 sg:pub.10.1007/s00216-004-2708-9
6 sg:pub.10.1007/s00216-006-0559-2
7 schema:datePublished 2007-12
8 schema:datePublishedReg 2007-12-01
9 schema:description This paper describes the fabrication of gold nanopillar and nanorod arrays and theoretical calculations of electromagnetic fields (EMFs) around ordered arrangements of these nanostructures. The EMFs of both single nanopillars and dimers of nanopillars—having nanoscale gaps between the two adjacent nanopillars forming the dimers—are simulated in this work by employing the finite-difference time-domain method. In the case of simulations for dimers of nanopillars, the nanoscale gaps between the nanopillars are varied between 5 and 20 nm, and calculations of the electromagnetic fields in the vicinity of the nanopillars and in the gaps between the nanopillars were carried out. Fabrication of gold nanopillars in a controlled manner for forming SERS substrates involves focused ion beam (FIB) milling. The nanostructures were fabricated on gold-coated silica, mica, and quartz planar substrates as well as on gold-coated tips of four mode and multimode silica optical fibers.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N859ec0d82d5740bfbb1bc5d291525679
14 Nd830a518a653414398e963be3701f11d
15 sg:journal.1034468
16 schema:keywords Focused Ion Beam Fabrication
17 Raman scattering
18 SERS substrates
19 adjacent nanopillars
20 arrangement
21 array
22 beam fabrication
23 beam milling
24 calculations
25 case of simulation
26 cases
27 dimer
28 electromagnetic field
29 fabrication
30 fibers
31 field
32 finite-difference time-domain method
33 gap
34 gold nanopillars
35 gold nanostructures
36 gold-coated silica
37 gold-coated tip
38 ion beam fabrication
39 manner
40 method
41 mica
42 milling
43 mode
44 multimode silica optical fibers
45 nanopillars
46 nanorod arrays
47 nanoscale
48 nanoscale gaps
49 nanostructures
50 optical fiber
51 paper
52 planar substrates
53 scattering
54 silica
55 silica optical fibers
56 simulations
57 single nanopillars
58 substrate
59 surface
60 theoretical calculations
61 theoretical simulations
62 time-domain method
63 tip
64 vicinity
65 work
66 schema:name Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)
67 schema:pagination 164-171
68 schema:productId N4606126d39784bd6963580c207489628
69 N575152da3a9942a8bea168113188e078
70 N8f20405fdc8848dfbb3652f39047bc96
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039282251
72 https://doi.org/10.1007/s12030-008-9017-x
73 schema:sdDatePublished 2022-05-10T09:56
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Ne071f0694b2e40679764e0da367018c9
76 schema:url https://doi.org/10.1007/s12030-008-9017-x
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N4606126d39784bd6963580c207489628 schema:name pubmed_id
81 schema:value 23976888
82 rdf:type schema:PropertyValue
83 N575152da3a9942a8bea168113188e078 schema:name doi
84 schema:value 10.1007/s12030-008-9017-x
85 rdf:type schema:PropertyValue
86 N859ec0d82d5740bfbb1bc5d291525679 schema:volumeNumber 3
87 rdf:type schema:PublicationVolume
88 N8f20405fdc8848dfbb3652f39047bc96 schema:name dimensions_id
89 schema:value pub.1039282251
90 rdf:type schema:PropertyValue
91 Nd830a518a653414398e963be3701f11d schema:issueNumber 3-4
92 rdf:type schema:PublicationIssue
93 Ne071f0694b2e40679764e0da367018c9 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ne618019c372144a69cb7c2ea6e327b11 rdf:first sg:person.016323464061.48
96 rdf:rest Nfb28d12b844c4563aa9b2def242b8e2e
97 Ne80b06ab47e449fc8a18e49e7199ab1e rdf:first sg:person.01353431112.18
98 rdf:rest Ne618019c372144a69cb7c2ea6e327b11
99 Nfb28d12b844c4563aa9b2def242b8e2e rdf:first sg:person.01267242131.25
100 rdf:rest rdf:nil
101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
102 schema:name Chemical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
105 schema:name Technology
106 rdf:type schema:DefinedTerm
107 sg:grant.2501701 http://pending.schema.org/fundedItem sg:pub.10.1007/s12030-008-9017-x
108 rdf:type schema:MonetaryGrant
109 sg:grant.2503812 http://pending.schema.org/fundedItem sg:pub.10.1007/s12030-008-9017-x
110 rdf:type schema:MonetaryGrant
111 sg:journal.1034468 schema:issn 1551-1286
112 1551-1294
113 schema:name NanoBiotechnology
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01267242131.25 schema:affiliation grid-institutes:grid.26009.3d
117 schema:familyName Vo-Dinh
118 schema:givenName Tuan
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267242131.25
120 rdf:type schema:Person
121 sg:person.01353431112.18 schema:affiliation grid-institutes:grid.507553.1
122 schema:familyName Dhawan
123 schema:givenName Anuj
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353431112.18
125 rdf:type schema:Person
126 sg:person.016323464061.48 schema:affiliation grid-institutes:grid.507553.1
127 schema:familyName Gerhold
128 schema:givenName Michael
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323464061.48
130 rdf:type schema:Person
131 sg:pub.10.1007/bfb0048317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085164077
132 https://doi.org/10.1007/bfb0048317
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00216-004-2708-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043589904
135 https://doi.org/10.1007/s00216-004-2708-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00216-006-0559-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007937510
138 https://doi.org/10.1007/s00216-006-0559-2
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.26009.3d schema:alternateName Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA
141 schema:name Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA
142 rdf:type schema:Organization
143 grid-institutes:grid.507553.1 schema:alternateName US Army Research Office, Research Triangle Park, Durham, NC, USA
144 schema:name Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA
145 US Army Research Office, Research Triangle Park, Durham, NC, USA
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...