Nano-Raman Spectroscopy: Surface Plasmon Emission, Field Gradients, and Fundamentally Near Field Propagation Effects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

H. D. Hallen

ABSTRACT

Nano-Raman spectra differ from far-field Raman spectra. The differences result from a strong electric field gradient near the metal tip, propagation, and polarization, but the dependence upon probe-sample distance can only be explained by the inclusion of surface plasmons and the near-field, non-propagating terms of the dipole emission. A simple model based upon these components accurately describes distance-dependent data measured with a near-field scanning optical microscope. Our essentially near-field model will apply generally to Raman spectroscopy near a nanoscale conductor. More... »

PAGES

197-202

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12030-008-9013-1

DOI

http://dx.doi.org/10.1007/s12030-008-9013-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021410288


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, North Carolina State University Raleigh, 27695-8202, Raleigh, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Physics, North Carolina State University Raleigh, 27695-8202, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hallen", 
        "givenName": "H. D.", 
        "id": "sg:person.01066540430.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066540430.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00216-005-3353-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001610227", 
          "https://doi.org/10.1007/s00216-005-3353-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01391532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007942321", 
          "https://doi.org/10.1007/bf01391532"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Nano-Raman spectra differ from far-field Raman spectra. The differences result from a strong electric field gradient near the metal tip, propagation, and polarization, but the dependence upon probe-sample distance can only be explained by the inclusion of surface plasmons and the near-field, non-propagating terms of the dipole emission. A simple model based upon these components accurately describes distance-dependent data measured with a near-field scanning optical microscope. Our essentially near-field model will apply generally to Raman spectroscopy near a nanoscale conductor.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12030-008-9013-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3027681", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3476129", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1034468", 
        "issn": [
          "1551-1286", 
          "1551-1294"
        ], 
        "name": "NanoBiotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "near-field scanning optical microscope", 
      "field gradient", 
      "strong electric field gradient", 
      "scanning optical microscope", 
      "probe-sample distance", 
      "electric field gradient", 
      "surface plasmon emission", 
      "field propagation effects", 
      "plasmon emission", 
      "surface plasmons", 
      "dipole emission", 
      "nanoscale conductors", 
      "metal tip", 
      "optical microscope", 
      "Raman spectroscopy", 
      "propagation effects", 
      "Raman spectra", 
      "spectra", 
      "emission", 
      "simple model", 
      "plasmons", 
      "near-field model", 
      "polarization", 
      "spectroscopy", 
      "microscope", 
      "dependence", 
      "propagation", 
      "conductors", 
      "distance", 
      "gradient", 
      "tip", 
      "model", 
      "components", 
      "terms", 
      "effect", 
      "data", 
      "inclusion", 
      "differences"
    ], 
    "name": "Nano-Raman Spectroscopy: Surface Plasmon Emission, Field Gradients, and Fundamentally Near Field Propagation Effects", 
    "pagination": "197-202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021410288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12030-008-9013-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12030-008-9013-1", 
      "https://app.dimensions.ai/details/publication/pub.1021410288"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_438.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12030-008-9013-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9013-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9013-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9013-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9013-1'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      22 PREDICATES      66 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12030-008-9013-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N788b913c61ef4b7a8ecce81b92770674
4 schema:citation sg:pub.10.1007/bf01391532
5 sg:pub.10.1007/s00216-005-3353-7
6 schema:datePublished 2007-12
7 schema:datePublishedReg 2007-12-01
8 schema:description Nano-Raman spectra differ from far-field Raman spectra. The differences result from a strong electric field gradient near the metal tip, propagation, and polarization, but the dependence upon probe-sample distance can only be explained by the inclusion of surface plasmons and the near-field, non-propagating terms of the dipole emission. A simple model based upon these components accurately describes distance-dependent data measured with a near-field scanning optical microscope. Our essentially near-field model will apply generally to Raman spectroscopy near a nanoscale conductor.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N3587c37890394d29bed88809429a7117
13 N87c163365ae4426c9d9f2a5c641d434b
14 sg:journal.1034468
15 schema:keywords Raman spectra
16 Raman spectroscopy
17 components
18 conductors
19 data
20 dependence
21 differences
22 dipole emission
23 distance
24 effect
25 electric field gradient
26 emission
27 field gradient
28 field propagation effects
29 gradient
30 inclusion
31 metal tip
32 microscope
33 model
34 nanoscale conductors
35 near-field model
36 near-field scanning optical microscope
37 optical microscope
38 plasmon emission
39 plasmons
40 polarization
41 probe-sample distance
42 propagation
43 propagation effects
44 scanning optical microscope
45 simple model
46 spectra
47 spectroscopy
48 strong electric field gradient
49 surface plasmon emission
50 surface plasmons
51 terms
52 tip
53 schema:name Nano-Raman Spectroscopy: Surface Plasmon Emission, Field Gradients, and Fundamentally Near Field Propagation Effects
54 schema:pagination 197-202
55 schema:productId Na27789e560874464adb715c8ce27cad8
56 Ne3094170afda470c9768f8d79ad6d03c
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021410288
58 https://doi.org/10.1007/s12030-008-9013-1
59 schema:sdDatePublished 2022-05-20T07:24
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N277679289a5a49a7890476c9833e5d4a
62 schema:url https://doi.org/10.1007/s12030-008-9013-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N277679289a5a49a7890476c9833e5d4a schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N3587c37890394d29bed88809429a7117 schema:volumeNumber 3
69 rdf:type schema:PublicationVolume
70 N788b913c61ef4b7a8ecce81b92770674 rdf:first sg:person.01066540430.22
71 rdf:rest rdf:nil
72 N87c163365ae4426c9d9f2a5c641d434b schema:issueNumber 3-4
73 rdf:type schema:PublicationIssue
74 Na27789e560874464adb715c8ce27cad8 schema:name doi
75 schema:value 10.1007/s12030-008-9013-1
76 rdf:type schema:PropertyValue
77 Ne3094170afda470c9768f8d79ad6d03c schema:name dimensions_id
78 schema:value pub.1021410288
79 rdf:type schema:PropertyValue
80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
81 schema:name Chemical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Chemistry (incl. Structural)
85 rdf:type schema:DefinedTerm
86 sg:grant.3027681 http://pending.schema.org/fundedItem sg:pub.10.1007/s12030-008-9013-1
87 rdf:type schema:MonetaryGrant
88 sg:grant.3476129 http://pending.schema.org/fundedItem sg:pub.10.1007/s12030-008-9013-1
89 rdf:type schema:MonetaryGrant
90 sg:journal.1034468 schema:issn 1551-1286
91 1551-1294
92 schema:name NanoBiotechnology
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.01066540430.22 schema:affiliation grid-institutes:grid.40803.3f
96 schema:familyName Hallen
97 schema:givenName H. D.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066540430.22
99 rdf:type schema:Person
100 sg:pub.10.1007/bf01391532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007942321
101 https://doi.org/10.1007/bf01391532
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00216-005-3353-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001610227
104 https://doi.org/10.1007/s00216-005-3353-7
105 rdf:type schema:CreativeWork
106 grid-institutes:grid.40803.3f schema:alternateName Department of Physics, North Carolina State University Raleigh, 27695-8202, Raleigh, NC, USA
107 schema:name Department of Physics, North Carolina State University Raleigh, 27695-8202, Raleigh, NC, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...