Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07-08

AUTHORS

Anton Ressine, David Finnskog, György Marko-Varga, Thomas Laurell

ABSTRACT

Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous–nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176° were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1 pM, a spot size of 50 μm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200 μm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5 μL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity. More... »

PAGES

18-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12030-008-9012-2

DOI

http://dx.doi.org/10.1007/s12030-008-9012-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032254794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ressine", 
        "givenName": "Anton", 
        "id": "sg:person.01214363143.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214363143.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finnskog", 
        "givenName": "David", 
        "id": "sg:person.01126612044.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126612044.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Analytical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Analytical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marko-Varga", 
        "givenName": "Gy\u00f6rgy", 
        "id": "sg:person.0706634425.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706634425.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laurell", 
        "givenName": "Thomas", 
        "id": "sg:person.0624366044.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624366044.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024654648", 
          "https://doi.org/10.1038/nmat924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-005-0602-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010359715", 
          "https://doi.org/10.1007/s00542-005-0602-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/nbt:1:1:093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018694879", 
          "https://doi.org/10.1385/nbt:1:1:093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020785818687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022186902", 
          "https://doi.org/10.1023/a:1020785818687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/432036a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035536645", 
          "https://doi.org/10.1038/432036a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-08", 
    "datePublishedReg": "2008-07-08", 
    "description": "Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous\u2013nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176\u00b0 were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1\u00a0pM, a spot size of 50\u00a0\u03bcm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200\u00a0\u03bcm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5\u00a0\u03bcL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12030-008-9012-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034468", 
        "issn": [
          "1551-1286", 
          "1551-1294"
        ], 
        "name": "NanoBiotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "superhydrophobic properties", 
      "porous silicon layers", 
      "high-sensitivity readout", 
      "water-repellent surfaces", 
      "subsequent surface modification", 
      "mass spectrometry applications", 
      "different wetting properties", 
      "hydrophobic surface properties", 
      "crystalline silicon wafers", 
      "nonwetting state", 
      "flight mass spectrometry (MALDI-TOF MS) applications", 
      "limit of detection", 
      "porous silicon", 
      "structured silicon", 
      "macroporous silicon", 
      "microfluidic area", 
      "silicon layer", 
      "readout sensitivity", 
      "electrochemical etching", 
      "confinement strategy", 
      "silicon surface", 
      "surface modification", 
      "improved surface", 
      "macroporous surface", 
      "anodization conditions", 
      "array density", 
      "MALDI spots", 
      "large sample volumes", 
      "silicon wafers", 
      "spectrometry applications", 
      "fluorescence-based assay", 
      "matrix-assisted laser desorption ionization time", 
      "wetting properties", 
      "surface properties", 
      "laser desorption ionization time", 
      "sample deposition", 
      "protein microarrays", 
      "contact angle", 
      "porous surface", 
      "solid surface", 
      "desorption ionization time", 
      "coupling agent", 
      "pore morphology", 
      "silicon", 
      "attractive substrate", 
      "sample volume", 
      "porous area", 
      "crystal localization", 
      "industrial applications", 
      "chip", 
      "ionization time", 
      "localized crystallization", 
      "spot size", 
      "square centimeter", 
      "surface", 
      "properties", 
      "superhydrophobicity", 
      "biotechnology", 
      "bioanalysis", 
      "applications", 
      "etching", 
      "wafers", 
      "wettability", 
      "fundamental properties", 
      "anchor points", 
      "readout", 
      "crystallization", 
      "substrate", 
      "morphology", 
      "immunoglobulin G", 
      "crystals", 
      "confinement", 
      "deposition", 
      "layer", 
      "detection", 
      "degradation", 
      "modification", 
      "size", 
      "limit", 
      "advantages", 
      "sensitivity", 
      "angle", 
      "plasma", 
      "assays", 
      "density", 
      "spots", 
      "centimeters", 
      "processing", 
      "agents", 
      "PM", 
      "area", 
      "samples", 
      "paper", 
      "microarrays", 
      "conditions", 
      "terms", 
      "important role", 
      "state", 
      "strategies", 
      "volume", 
      "possibility", 
      "point", 
      "time", 
      "localization", 
      "long term", 
      "role", 
      "months"
    ], 
    "name": "Superhydrophobic Properties of Nanostructured\u2013Microstructured Porous Silicon for Improved Surface-Based Bioanalysis", 
    "pagination": "18-27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032254794"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12030-008-9012-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12030-008-9012-2", 
      "https://app.dimensions.ai/details/publication/pub.1032254794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_462.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12030-008-9012-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9012-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9012-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9012-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12030-008-9012-2'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      22 PREDICATES      138 URIs      124 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12030-008-9012-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd090dc8bcc9041d09eac0a43d55224c9
4 schema:citation sg:pub.10.1007/s00542-005-0602-9
5 sg:pub.10.1023/a:1020785818687
6 sg:pub.10.1038/39827
7 sg:pub.10.1038/432036a
8 sg:pub.10.1038/nmat924
9 sg:pub.10.1385/nbt:1:1:093
10 schema:datePublished 2008-07-08
11 schema:datePublishedReg 2008-07-08
12 schema:description Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous–nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176° were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1 pM, a spot size of 50 μm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200 μm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5 μL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3b94f751710745349fda21e52551123b
17 Ne732fb0524f74abe9c4377c66ccc3a09
18 sg:journal.1034468
19 schema:keywords MALDI spots
20 PM
21 advantages
22 agents
23 anchor points
24 angle
25 anodization conditions
26 applications
27 area
28 array density
29 assays
30 attractive substrate
31 bioanalysis
32 biotechnology
33 centimeters
34 chip
35 conditions
36 confinement
37 confinement strategy
38 contact angle
39 coupling agent
40 crystal localization
41 crystalline silicon wafers
42 crystallization
43 crystals
44 degradation
45 density
46 deposition
47 desorption ionization time
48 detection
49 different wetting properties
50 electrochemical etching
51 etching
52 flight mass spectrometry (MALDI-TOF MS) applications
53 fluorescence-based assay
54 fundamental properties
55 high-sensitivity readout
56 hydrophobic surface properties
57 immunoglobulin G
58 important role
59 improved surface
60 industrial applications
61 ionization time
62 large sample volumes
63 laser desorption ionization time
64 layer
65 limit
66 limit of detection
67 localization
68 localized crystallization
69 long term
70 macroporous silicon
71 macroporous surface
72 mass spectrometry applications
73 matrix-assisted laser desorption ionization time
74 microarrays
75 microfluidic area
76 modification
77 months
78 morphology
79 nonwetting state
80 paper
81 plasma
82 point
83 pore morphology
84 porous area
85 porous silicon
86 porous silicon layers
87 porous surface
88 possibility
89 processing
90 properties
91 protein microarrays
92 readout
93 readout sensitivity
94 role
95 sample deposition
96 sample volume
97 samples
98 sensitivity
99 silicon
100 silicon layer
101 silicon surface
102 silicon wafers
103 size
104 solid surface
105 spectrometry applications
106 spot size
107 spots
108 square centimeter
109 state
110 strategies
111 structured silicon
112 subsequent surface modification
113 substrate
114 superhydrophobic properties
115 superhydrophobicity
116 surface
117 surface modification
118 surface properties
119 terms
120 time
121 volume
122 wafers
123 water-repellent surfaces
124 wettability
125 wetting properties
126 schema:name Superhydrophobic Properties of Nanostructured–Microstructured Porous Silicon for Improved Surface-Based Bioanalysis
127 schema:pagination 18-27
128 schema:productId N16c2ef8010ad45dcb886c6960efb22e3
129 Nfbb9a1c338ab4f23bb2936bc8e197af2
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254794
131 https://doi.org/10.1007/s12030-008-9012-2
132 schema:sdDatePublished 2022-05-20T07:24
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N2b03d848c40543dda7d84f942859f70b
135 schema:url https://doi.org/10.1007/s12030-008-9012-2
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N16c2ef8010ad45dcb886c6960efb22e3 schema:name dimensions_id
140 schema:value pub.1032254794
141 rdf:type schema:PropertyValue
142 N2b03d848c40543dda7d84f942859f70b schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N2fe115cd230d435d92bb952fb0ea1432 rdf:first sg:person.0706634425.00
145 rdf:rest Nb144be043c67405f8201fd51a03cbc18
146 N3b94f751710745349fda21e52551123b schema:volumeNumber 4
147 rdf:type schema:PublicationVolume
148 Nb144be043c67405f8201fd51a03cbc18 rdf:first sg:person.0624366044.56
149 rdf:rest rdf:nil
150 Nd090dc8bcc9041d09eac0a43d55224c9 rdf:first sg:person.01214363143.82
151 rdf:rest Neeed635eca264237bf15124ecb2b7711
152 Ne732fb0524f74abe9c4377c66ccc3a09 schema:issueNumber 1-4
153 rdf:type schema:PublicationIssue
154 Neeed635eca264237bf15124ecb2b7711 rdf:first sg:person.01126612044.54
155 rdf:rest N2fe115cd230d435d92bb952fb0ea1432
156 Nfbb9a1c338ab4f23bb2936bc8e197af2 schema:name doi
157 schema:value 10.1007/s12030-008-9012-2
158 rdf:type schema:PropertyValue
159 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
160 schema:name Chemical Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
163 schema:name Physical Chemistry (incl. Structural)
164 rdf:type schema:DefinedTerm
165 sg:journal.1034468 schema:issn 1551-1286
166 1551-1294
167 schema:name NanoBiotechnology
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.01126612044.54 schema:affiliation grid-institutes:grid.4514.4
171 schema:familyName Finnskog
172 schema:givenName David
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126612044.54
174 rdf:type schema:Person
175 sg:person.01214363143.82 schema:affiliation grid-institutes:grid.4514.4
176 schema:familyName Ressine
177 schema:givenName Anton
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214363143.82
179 rdf:type schema:Person
180 sg:person.0624366044.56 schema:affiliation grid-institutes:grid.4514.4
181 schema:familyName Laurell
182 schema:givenName Thomas
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624366044.56
184 rdf:type schema:Person
185 sg:person.0706634425.00 schema:affiliation grid-institutes:grid.4514.4
186 schema:familyName Marko-Varga
187 schema:givenName György
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706634425.00
189 rdf:type schema:Person
190 sg:pub.10.1007/s00542-005-0602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010359715
191 https://doi.org/10.1007/s00542-005-0602-9
192 rdf:type schema:CreativeWork
193 sg:pub.10.1023/a:1020785818687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022186902
194 https://doi.org/10.1023/a:1020785818687
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/39827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037847007
197 https://doi.org/10.1038/39827
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/432036a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035536645
200 https://doi.org/10.1038/432036a
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmat924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024654648
203 https://doi.org/10.1038/nmat924
204 rdf:type schema:CreativeWork
205 sg:pub.10.1385/nbt:1:1:093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018694879
206 https://doi.org/10.1385/nbt:1:1:093
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.4514.4 schema:alternateName Department of Analytical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
209 Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden
210 schema:name Department of Analytical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
211 Department of Electrical Measurements, Lund Institute of Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...