Fully Parametric Sleep Staging Compatible with the Classical Criteria View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

Urszula Malinowska, Hubert Klekowicz, Andrzej Wakarow, Szymon Niemcewicz, Piotr J. Durka

ABSTRACT

We present an open system for sleep staging, based explicitly on the criteria used in visual EEG analysis. Slow waves, theta and alpha waves, sleep spindles and K-complexes are parameterized in terms of time duration, amplitude, and frequency of each waveform by means of the matching pursuit algorithm. It allows the detection of these structures using mostly the criteria from visual EEG analysis. For example, within this framework for the first time we compute directly the relative duration of slow waves, which is a basic parameter in recognition of deep sleep stages. Performance of the system is evaluated on 20 polysomnographic recordings, scored by experienced encephalographers. Seven recordings were scored by more than one expert. Proposed system gives concordance with visual staging close to the inter-expert concordance. The algorithm is implemented in a user-friendly software system for display and analysis of polysomnographic recordings, freely available with complete source code from http://signalml.org/svarog.html . More... »

PAGES

245

References to SciGraph publications

  • 1932-12. Fourier-Analyse von Elektrencephalogrammen des Menschen in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 1994-03. AI-based approach to automatic sleep classification in BIOLOGICAL CYBERNETICS
  • 2006-03. Comparison of manual sleep staging with automated neural network-based analysis in clinical practice in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12021-009-9059-9

    DOI

    http://dx.doi.org/10.1007/s12021-009-9059-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020032538

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19936970


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Access to Information", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Automation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electroencephalography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Eye Movements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Movement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polysomnography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sleep Stages", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "User-Computer Interface", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.12847.38", 
              "name": [
                "Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malinowska", 
            "givenName": "Urszula", 
            "id": "sg:person.0605416522.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.12847.38", 
              "name": [
                "Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klekowicz", 
            "givenName": "Hubert", 
            "id": "sg:person.0721645122.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721645122.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.13339.3b", 
              "name": [
                "Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wakarow", 
            "givenName": "Andrzej", 
            "id": "sg:person.01036073522.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036073522.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.13339.3b", 
              "name": [
                "Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niemcewicz", 
            "givenName": "Szymon", 
            "id": "sg:person.01347123507.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347123507.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Warsaw", 
              "id": "https://www.grid.ac/institutes/grid.12847.38", 
              "name": [
                "Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durka", 
            "givenName": "Piotr J.", 
            "id": "sg:person.0724722444.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1046/j.1440-1819.2001.00824.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006617413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0270(02)00075-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006686634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(87)90214-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011166427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(87)90214-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011166427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00203237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011246210", 
              "https://doi.org/10.1007/bf00203237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00203237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011246210", 
              "https://doi.org/10.1007/bf00203237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01751972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014697115", 
              "https://doi.org/10.1007/bf01751972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000085205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014953953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000026476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017381000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2005.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019227645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(72)90009-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021823617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(72)90009-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021823617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8986.1969.tb02836.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024836780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-005-0002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028033036", 
              "https://doi.org/10.1007/s11517-005-0002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-005-0002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028033036", 
              "https://doi.org/10.1007/s11517-005-0002-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7101(86)90036-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029638468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cbmr.2000.1549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030552703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2007.06.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031281531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/001316446002000104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039619716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/001316446002000104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039619716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2869.1992.tb00011.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039904835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(93)90118-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040633563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(93)90118-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040633563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(71)90092-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044555242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(71)90092-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044555242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046629848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.051914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.051914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.258082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061228470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/memb.2006.1657784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061401603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/27.7.1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076977190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077429614", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/17.8.711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082471317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/19.1.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082894179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sleep/27.7.1394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090966677"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-12", 
        "datePublishedReg": "2009-12-01", 
        "description": "We present an open system for sleep staging, based explicitly on the criteria used in visual EEG analysis. Slow waves, theta and alpha waves, sleep spindles and K-complexes are parameterized in terms of time duration, amplitude, and frequency of each waveform by means of the matching pursuit algorithm. It allows the detection of these structures using mostly the criteria from visual EEG analysis. For example, within this framework for the first time we compute directly the relative duration of slow waves, which is a basic parameter in recognition of deep sleep stages. Performance of the system is evaluated on 20 polysomnographic recordings, scored by experienced encephalographers. Seven recordings were scored by more than one expert. Proposed system gives concordance with visual staging close to the inter-expert concordance. The algorithm is implemented in a user-friendly software system for display and analysis of polysomnographic recordings, freely available with complete source code from http://signalml.org/svarog.html .", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030723", 
            "issn": [
              "1539-2791", 
              "1559-0089"
            ], 
            "name": "Neuroinformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Fully Parametric Sleep Staging Compatible with the Classical Criteria", 
        "pagination": "245", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5f726d229e8843a39ce28bcc3eb411a23fa9370b3418024326e95f44d888aa5d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19936970"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101142069"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12021-009-9059-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020032538"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12021-009-9059-9", 
          "https://app.dimensions.ai/details/publication/pub.1020032538"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12021-009-9059-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9059-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9059-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9059-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9059-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      70 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12021-009-9059-9 schema:about N016ba29e0b85489ca9300bbcd3097573
    2 N1ec8d3bde2a5425fa0d2cf96e59e0b0a
    3 N2b8ff79c485946d2a65122cbe7b91543
    4 N3d100eee76764a27a2927812208455d5
    5 N3d3b114f7d7e424ab7e6ceed7528fd25
    6 N8076d1e03a724b9189b4c6264ec8a8b7
    7 N9723557960b74499bd6e0f03760385bb
    8 N987abd51411e4e7fb25b2139df6ab583
    9 N9cd63fad7a874fb0b6ed940acc6324bc
    10 Na3bd6b6aa09b410595959d52db4d6f8a
    11 Ncbadd5a659994ac8872a77a88a575cfb
    12 Nce219e0507174f71bc39e509d29b504e
    13 Ne8b46d729fd04177b23ea76d2cad12e7
    14 Ned7f5b0006294ce2a0c218bfca676127
    15 anzsrc-for:08
    16 anzsrc-for:0801
    17 schema:author Nd6bd8caf2e994cb0a7af38c871ab204f
    18 schema:citation sg:pub.10.1007/bf00203237
    19 sg:pub.10.1007/bf01751972
    20 sg:pub.10.1007/s11517-005-0002-4
    21 https://app.dimensions.ai/details/publication/pub.1077429614
    22 https://doi.org/10.1006/cbmr.2000.1549
    23 https://doi.org/10.1016/0013-4694(71)90092-7
    24 https://doi.org/10.1016/0013-4694(72)90009-0
    25 https://doi.org/10.1016/0013-4694(87)90214-8
    26 https://doi.org/10.1016/0013-4694(93)90118-f
    27 https://doi.org/10.1016/0020-7101(86)90036-x
    28 https://doi.org/10.1016/j.jneumeth.2005.02.010
    29 https://doi.org/10.1016/j.jneumeth.2007.06.016
    30 https://doi.org/10.1016/s0165-0270(02)00075-4
    31 https://doi.org/10.1016/s1388-2457(99)00175-3
    32 https://doi.org/10.1046/j.1440-1819.2001.00824.x
    33 https://doi.org/10.1093/sleep/17.8.711
    34 https://doi.org/10.1093/sleep/19.1.26
    35 https://doi.org/10.1093/sleep/27.7.1374
    36 https://doi.org/10.1093/sleep/27.7.1394
    37 https://doi.org/10.1103/physreve.69.051914
    38 https://doi.org/10.1109/78.258082
    39 https://doi.org/10.1109/memb.2006.1657784
    40 https://doi.org/10.1111/j.1365-2869.1992.tb00011.x
    41 https://doi.org/10.1111/j.1469-8986.1969.tb02836.x
    42 https://doi.org/10.1159/000026476
    43 https://doi.org/10.1159/000085205
    44 https://doi.org/10.1177/001316446002000104
    45 schema:datePublished 2009-12
    46 schema:datePublishedReg 2009-12-01
    47 schema:description We present an open system for sleep staging, based explicitly on the criteria used in visual EEG analysis. Slow waves, theta and alpha waves, sleep spindles and K-complexes are parameterized in terms of time duration, amplitude, and frequency of each waveform by means of the matching pursuit algorithm. It allows the detection of these structures using mostly the criteria from visual EEG analysis. For example, within this framework for the first time we compute directly the relative duration of slow waves, which is a basic parameter in recognition of deep sleep stages. Performance of the system is evaluated on 20 polysomnographic recordings, scored by experienced encephalographers. Seven recordings were scored by more than one expert. Proposed system gives concordance with visual staging close to the inter-expert concordance. The algorithm is implemented in a user-friendly software system for display and analysis of polysomnographic recordings, freely available with complete source code from http://signalml.org/svarog.html .
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree false
    51 schema:isPartOf N8366a943a4da46ab95b7ba8b84aaf88d
    52 N9f6e8884bb684453996f94395bdb6ccd
    53 sg:journal.1030723
    54 schema:name Fully Parametric Sleep Staging Compatible with the Classical Criteria
    55 schema:pagination 245
    56 schema:productId N0f3f3e43d59344a1913ea266bc6e3889
    57 N1ac6d20e4732468db9ff3a327d0f64fe
    58 N71fcdc60f693419dbe86fa6140cdb83d
    59 N9aff8bff8012475392fdecf2e9dc7480
    60 Nbc8739219b05479da799b241658135ec
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020032538
    62 https://doi.org/10.1007/s12021-009-9059-9
    63 schema:sdDatePublished 2019-04-11T09:36
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Naaca7d1226d54251b4f7e5475ee53eac
    66 schema:url http://link.springer.com/10.1007%2Fs12021-009-9059-9
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N016ba29e0b85489ca9300bbcd3097573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name User-Computer Interface
    72 rdf:type schema:DefinedTerm
    73 N0cc05998a0534895a6f474b3263c1a46 rdf:first sg:person.01347123507.37
    74 rdf:rest Ned31147980704187bedce737745ce588
    75 N0f3f3e43d59344a1913ea266bc6e3889 schema:name readcube_id
    76 schema:value 5f726d229e8843a39ce28bcc3eb411a23fa9370b3418024326e95f44d888aa5d
    77 rdf:type schema:PropertyValue
    78 N1ac6d20e4732468db9ff3a327d0f64fe schema:name pubmed_id
    79 schema:value 19936970
    80 rdf:type schema:PropertyValue
    81 N1ec8d3bde2a5425fa0d2cf96e59e0b0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Software
    83 rdf:type schema:DefinedTerm
    84 N2b8ff79c485946d2a65122cbe7b91543 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Algorithms
    86 rdf:type schema:DefinedTerm
    87 N3d100eee76764a27a2927812208455d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Signal Processing, Computer-Assisted
    89 rdf:type schema:DefinedTerm
    90 N3d3b114f7d7e424ab7e6ceed7528fd25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Internet
    92 rdf:type schema:DefinedTerm
    93 N71fcdc60f693419dbe86fa6140cdb83d schema:name doi
    94 schema:value 10.1007/s12021-009-9059-9
    95 rdf:type schema:PropertyValue
    96 N8076d1e03a724b9189b4c6264ec8a8b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Automation
    98 rdf:type schema:DefinedTerm
    99 N8366a943a4da46ab95b7ba8b84aaf88d schema:issueNumber 4
    100 rdf:type schema:PublicationIssue
    101 N96ec8958d5364e62a759dbd088bca49f rdf:first sg:person.01036073522.55
    102 rdf:rest N0cc05998a0534895a6f474b3263c1a46
    103 N9723557960b74499bd6e0f03760385bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Eye Movements
    105 rdf:type schema:DefinedTerm
    106 N987abd51411e4e7fb25b2139df6ab583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Sleep Stages
    108 rdf:type schema:DefinedTerm
    109 N9aff8bff8012475392fdecf2e9dc7480 schema:name dimensions_id
    110 schema:value pub.1020032538
    111 rdf:type schema:PropertyValue
    112 N9cd63fad7a874fb0b6ed940acc6324bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Electroencephalography
    114 rdf:type schema:DefinedTerm
    115 N9f6e8884bb684453996f94395bdb6ccd schema:volumeNumber 7
    116 rdf:type schema:PublicationVolume
    117 Na3bd6b6aa09b410595959d52db4d6f8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Polysomnography
    119 rdf:type schema:DefinedTerm
    120 Na7f723cf07654ab4a4164e387c2ca69e rdf:first sg:person.0721645122.11
    121 rdf:rest N96ec8958d5364e62a759dbd088bca49f
    122 Naaca7d1226d54251b4f7e5475ee53eac schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 Nbc8739219b05479da799b241658135ec schema:name nlm_unique_id
    125 schema:value 101142069
    126 rdf:type schema:PropertyValue
    127 Ncbadd5a659994ac8872a77a88a575cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 Nce219e0507174f71bc39e509d29b504e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Brain
    132 rdf:type schema:DefinedTerm
    133 Nd6bd8caf2e994cb0a7af38c871ab204f rdf:first sg:person.0605416522.75
    134 rdf:rest Na7f723cf07654ab4a4164e387c2ca69e
    135 Ne8b46d729fd04177b23ea76d2cad12e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Access to Information
    137 rdf:type schema:DefinedTerm
    138 Ned31147980704187bedce737745ce588 rdf:first sg:person.0724722444.23
    139 rdf:rest rdf:nil
    140 Ned7f5b0006294ce2a0c218bfca676127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Movement
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Information and Computing Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Artificial Intelligence and Image Processing
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1030723 schema:issn 1539-2791
    150 1559-0089
    151 schema:name Neuroinformatics
    152 rdf:type schema:Periodical
    153 sg:person.01036073522.55 schema:affiliation https://www.grid.ac/institutes/grid.13339.3b
    154 schema:familyName Wakarow
    155 schema:givenName Andrzej
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036073522.55
    157 rdf:type schema:Person
    158 sg:person.01347123507.37 schema:affiliation https://www.grid.ac/institutes/grid.13339.3b
    159 schema:familyName Niemcewicz
    160 schema:givenName Szymon
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347123507.37
    162 rdf:type schema:Person
    163 sg:person.0605416522.75 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
    164 schema:familyName Malinowska
    165 schema:givenName Urszula
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75
    167 rdf:type schema:Person
    168 sg:person.0721645122.11 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
    169 schema:familyName Klekowicz
    170 schema:givenName Hubert
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721645122.11
    172 rdf:type schema:Person
    173 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
    174 schema:familyName Durka
    175 schema:givenName Piotr J.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
    177 rdf:type schema:Person
    178 sg:pub.10.1007/bf00203237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011246210
    179 https://doi.org/10.1007/bf00203237
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf01751972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014697115
    182 https://doi.org/10.1007/bf01751972
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11517-005-0002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028033036
    185 https://doi.org/10.1007/s11517-005-0002-4
    186 rdf:type schema:CreativeWork
    187 https://app.dimensions.ai/details/publication/pub.1077429614 schema:CreativeWork
    188 https://doi.org/10.1006/cbmr.2000.1549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030552703
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/0013-4694(71)90092-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044555242
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/0013-4694(72)90009-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021823617
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/0013-4694(87)90214-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011166427
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/0013-4694(93)90118-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1040633563
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/0020-7101(86)90036-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029638468
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.jneumeth.2005.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227645
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.jneumeth.2007.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031281531
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/s0165-0270(02)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686634
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1046/j.1440-1819.2001.00824.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006617413
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1093/sleep/17.8.711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082471317
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1093/sleep/19.1.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082894179
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1093/sleep/27.7.1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076977190
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/sleep/27.7.1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090966677
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physreve.69.051914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731437
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/memb.2006.1657784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061401603
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1111/j.1365-2869.1992.tb00011.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039904835
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1111/j.1469-8986.1969.tb02836.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024836780
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1159/000026476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017381000
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1159/000085205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014953953
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1177/001316446002000104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039619716
    233 rdf:type schema:CreativeWork
    234 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
    235 schema:name Department of Biomedical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681, Warszawa, Poland
    236 rdf:type schema:Organization
    237 https://www.grid.ac/institutes/grid.13339.3b schema:alternateName Medical University of Warsaw
    238 schema:name Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...