On the Robust Parametric Detection of EEG Artifacts in Polysomnographic Recordings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

H. Klekowicz, U. Malinowska, A. J. Piotrowska, D. Wołyńczyk-Gmaj, Sz. Niemcewicz, P. J. Durka

ABSTRACT

We present an open, parametric system for automatic detection of EEG artifacts in polysomnographic recordings. It relies on independent parameters reflecting the relative presence of each of the eight types of artifacts in a given epoch. An artifact is marked if any of these parameters exceeds a threshold. These thresholds, set for each parameter separately, can be adjusted via "learning by example" procedure (multidimensional minimization with computationally intensive cost function), which can be used to automatically tune the parameters to new types of datasets, environments or requirements. Performance of the system, evaluated on 103 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the inter-expert agreement. To make this statement well defined, we review the methodology of evaluation for this kind of detection systems. Complete source code is available from http://eeg.pl; a user-friendly version with Java interface is available from http://signalml.org. More... »

PAGES

147-160

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12021-009-9045-2

DOI

http://dx.doi.org/10.1007/s12021-009-9045-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047546754

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19308339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blinking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eye Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Dissemination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polysomnography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klekowicz", 
        "givenName": "H.", 
        "id": "sg:person.0721645122.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721645122.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malinowska", 
        "givenName": "U.", 
        "id": "sg:person.0605416522.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.13339.3b", 
          "name": [
            "Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piotrowska", 
        "givenName": "A. J.", 
        "id": "sg:person.0611712544.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611712544.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.13339.3b", 
          "name": [
            "Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wo\u0142y\u0144czyk-Gmaj", 
        "givenName": "D.", 
        "id": "sg:person.01372460236.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372460236.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.13339.3b", 
          "name": [
            "Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niemcewicz", 
        "givenName": "Sz.", 
        "id": "sg:person.01347123507.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347123507.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "P. J.", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1469-8986.3720163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001526920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(95)00216-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005871134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006686634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2007.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010035699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017422472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(02)00153-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019990004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(02)00153-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019990004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2004.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027406525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4694(98)00052-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029001868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2007.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029075779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cbmr.1993.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029545489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1995.7.6.1129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037415753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000026613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041548265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2607(99)00013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042390027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8986.2003.00141.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051491846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08037050600963040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058342381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1986.325682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2003.809476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3287615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074707900", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074966568", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075017586", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077294594", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077470248", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "We present an open, parametric system for automatic detection of EEG artifacts in polysomnographic recordings. It relies on independent parameters reflecting the relative presence of each of the eight types of artifacts in a given epoch. An artifact is marked if any of these parameters exceeds a threshold. These thresholds, set for each parameter separately, can be adjusted via \"learning by example\" procedure (multidimensional minimization with computationally intensive cost function), which can be used to automatically tune the parameters to new types of datasets, environments or requirements. Performance of the system, evaluated on 103 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the inter-expert agreement. To make this statement well defined, we review the methodology of evaluation for this kind of detection systems. Complete source code is available from http://eeg.pl; a user-friendly version with Java interface is available from http://signalml.org.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12021-009-9045-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030723", 
        "issn": [
          "1539-2791", 
          "1559-0089"
        ], 
        "name": "Neuroinformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "On the Robust Parametric Detection of EEG Artifacts in Polysomnographic Recordings", 
    "pagination": "147-160", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e27fc6ee710fd164e1e982190e1fc350219c0888fd6b89693408ecd6f8afff85"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19308339"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101142069"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12021-009-9045-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047546754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12021-009-9045-2", 
      "https://app.dimensions.ai/details/publication/pub.1047546754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47980_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12021-009-9045-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9045-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9045-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9045-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12021-009-9045-2'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      69 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12021-009-9045-2 schema:about N1081714c9c9f43b39cb33dbb183bbdca
2 N1f7780b9b579489298f58f59b7fb241a
3 N3773c674a98a48adbd2395e6fa2dc33e
4 N3dfd8a7c24a1422e9a8e958a172f9b52
5 N46daf1d8c9414e68a79edba587ea4f0b
6 N59898a9e0a8f480daea457a35f591ad4
7 N630c29b5a6544d0b87269a0cacb6d098
8 N63894039ebcc4db4803393257c3f8676
9 N678f2b02588b4a7a88b4746e8fb271f6
10 N78b6f91033fb4a82afc609f03e4a4c2a
11 N7e2e82cd81bd42bfaa626fa34117c5c8
12 Nb87c1326ad674220a5a720f06bfbe97f
13 Nc7cdbe91f9ac41d29dc74327a4633b30
14 Ne1894aaa1fa64e0f83f93e84bb51cffb
15 Ne369a75825634f2cb5f913e52da35e85
16 Nf1038bf1a256437e8427bf5cfd53dcea
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N2c9a3471a5744e2fafdb2646e01aea7a
20 schema:citation https://app.dimensions.ai/details/publication/pub.1074707900
21 https://app.dimensions.ai/details/publication/pub.1074966568
22 https://app.dimensions.ai/details/publication/pub.1075017586
23 https://app.dimensions.ai/details/publication/pub.1077294594
24 https://app.dimensions.ai/details/publication/pub.1077470248
25 https://doi.org/10.1006/cbmr.1993.1010
26 https://doi.org/10.1016/0013-4694(95)00216-2
27 https://doi.org/10.1016/j.clinph.2005.12.013
28 https://doi.org/10.1016/j.cmpb.2004.05.007
29 https://doi.org/10.1016/j.compbiomed.2007.03.007
30 https://doi.org/10.1016/j.jneumeth.2003.10.009
31 https://doi.org/10.1016/j.neunet.2007.09.020
32 https://doi.org/10.1016/s0013-4694(98)00052-2
33 https://doi.org/10.1016/s0165-0270(02)00075-4
34 https://doi.org/10.1016/s0167-8760(02)00153-8
35 https://doi.org/10.1016/s0169-2607(99)00013-9
36 https://doi.org/10.1080/08037050600963040
37 https://doi.org/10.1109/tbme.1986.325682
38 https://doi.org/10.1109/tbme.2003.809476
39 https://doi.org/10.1111/1469-8986.3720163
40 https://doi.org/10.1111/j.1469-8986.2003.00141.x
41 https://doi.org/10.1126/science.3287615
42 https://doi.org/10.1159/000026613
43 https://doi.org/10.1162/neco.1995.7.6.1129
44 schema:datePublished 2009-06
45 schema:datePublishedReg 2009-06-01
46 schema:description We present an open, parametric system for automatic detection of EEG artifacts in polysomnographic recordings. It relies on independent parameters reflecting the relative presence of each of the eight types of artifacts in a given epoch. An artifact is marked if any of these parameters exceeds a threshold. These thresholds, set for each parameter separately, can be adjusted via "learning by example" procedure (multidimensional minimization with computationally intensive cost function), which can be used to automatically tune the parameters to new types of datasets, environments or requirements. Performance of the system, evaluated on 103 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the inter-expert agreement. To make this statement well defined, we review the methodology of evaluation for this kind of detection systems. Complete source code is available from http://eeg.pl; a user-friendly version with Java interface is available from http://signalml.org.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N6f5d4a661d914b4f8b47d6d715a31ee3
51 Nb9982c0241d74e5b8f322c5da2c5222c
52 sg:journal.1030723
53 schema:name On the Robust Parametric Detection of EEG Artifacts in Polysomnographic Recordings
54 schema:pagination 147-160
55 schema:productId N23f6f2420dd243b9ab2e33d269b55582
56 N3e71da4a681f454e97e70fc537b2bea3
57 N83df230a9fa344218df5752f6a40ecaa
58 N866f976eae634956a2a2a9e75a7ca261
59 Nfa4dd30bad334aadbf426c5b20cb9828
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047546754
61 https://doi.org/10.1007/s12021-009-9045-2
62 schema:sdDatePublished 2019-04-11T09:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N69ca64bf35ff40229c45628585e524a3
65 schema:url http://link.springer.com/10.1007%2Fs12021-009-9045-2
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N00b704f27ca84553889bafdbb3790d0c rdf:first sg:person.0611712544.89
70 rdf:rest N342b09d7861e4432be0b4d5b9980c5cf
71 N1081714c9c9f43b39cb33dbb183bbdca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Sleep
73 rdf:type schema:DefinedTerm
74 N1f7780b9b579489298f58f59b7fb241a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Muscles
76 rdf:type schema:DefinedTerm
77 N23f6f2420dd243b9ab2e33d269b55582 schema:name readcube_id
78 schema:value e27fc6ee710fd164e1e982190e1fc350219c0888fd6b89693408ecd6f8afff85
79 rdf:type schema:PropertyValue
80 N2c9a3471a5744e2fafdb2646e01aea7a rdf:first sg:person.0721645122.11
81 rdf:rest N81686270cbc9478aa0c446a5f8b39d38
82 N342b09d7861e4432be0b4d5b9980c5cf rdf:first sg:person.01372460236.43
83 rdf:rest Ncc2023af1946408d9f94104421eada4b
84 N3773c674a98a48adbd2395e6fa2dc33e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Information Dissemination
86 rdf:type schema:DefinedTerm
87 N3dfd8a7c24a1422e9a8e958a172f9b52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Electrodes
89 rdf:type schema:DefinedTerm
90 N3e71da4a681f454e97e70fc537b2bea3 schema:name nlm_unique_id
91 schema:value 101142069
92 rdf:type schema:PropertyValue
93 N46daf1d8c9414e68a79edba587ea4f0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Electrocardiography
95 rdf:type schema:DefinedTerm
96 N59898a9e0a8f480daea457a35f591ad4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Blinking
98 rdf:type schema:DefinedTerm
99 N630c29b5a6544d0b87269a0cacb6d098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Artifacts
101 rdf:type schema:DefinedTerm
102 N63894039ebcc4db4803393257c3f8676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Software
104 rdf:type schema:DefinedTerm
105 N678f2b02588b4a7a88b4746e8fb271f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N69ca64bf35ff40229c45628585e524a3 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N6f5d4a661d914b4f8b47d6d715a31ee3 schema:issueNumber 2
111 rdf:type schema:PublicationIssue
112 N78b6f91033fb4a82afc609f03e4a4c2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Artificial Intelligence
114 rdf:type schema:DefinedTerm
115 N7e2e82cd81bd42bfaa626fa34117c5c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Signal Processing, Computer-Assisted
117 rdf:type schema:DefinedTerm
118 N81686270cbc9478aa0c446a5f8b39d38 rdf:first sg:person.0605416522.75
119 rdf:rest N00b704f27ca84553889bafdbb3790d0c
120 N83df230a9fa344218df5752f6a40ecaa schema:name pubmed_id
121 schema:value 19308339
122 rdf:type schema:PropertyValue
123 N866f976eae634956a2a2a9e75a7ca261 schema:name doi
124 schema:value 10.1007/s12021-009-9045-2
125 rdf:type schema:PropertyValue
126 Nab7bb20f1c584a478b49ebfe72cf9bba rdf:first sg:person.0724722444.23
127 rdf:rest rdf:nil
128 Nb87c1326ad674220a5a720f06bfbe97f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Algorithms
130 rdf:type schema:DefinedTerm
131 Nb9982c0241d74e5b8f322c5da2c5222c schema:volumeNumber 7
132 rdf:type schema:PublicationVolume
133 Nc7cdbe91f9ac41d29dc74327a4633b30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Polysomnography
135 rdf:type schema:DefinedTerm
136 Ncc2023af1946408d9f94104421eada4b rdf:first sg:person.01347123507.37
137 rdf:rest Nab7bb20f1c584a478b49ebfe72cf9bba
138 Ne1894aaa1fa64e0f83f93e84bb51cffb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Electronics
140 rdf:type schema:DefinedTerm
141 Ne369a75825634f2cb5f913e52da35e85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Eye Movements
143 rdf:type schema:DefinedTerm
144 Nf1038bf1a256437e8427bf5cfd53dcea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Electroencephalography
146 rdf:type schema:DefinedTerm
147 Nfa4dd30bad334aadbf426c5b20cb9828 schema:name dimensions_id
148 schema:value pub.1047546754
149 rdf:type schema:PropertyValue
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 sg:journal.1030723 schema:issn 1539-2791
157 1559-0089
158 schema:name Neuroinformatics
159 rdf:type schema:Periodical
160 sg:person.01347123507.37 schema:affiliation https://www.grid.ac/institutes/grid.13339.3b
161 schema:familyName Niemcewicz
162 schema:givenName Sz.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347123507.37
164 rdf:type schema:Person
165 sg:person.01372460236.43 schema:affiliation https://www.grid.ac/institutes/grid.13339.3b
166 schema:familyName Wołyńczyk-Gmaj
167 schema:givenName D.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372460236.43
169 rdf:type schema:Person
170 sg:person.0605416522.75 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
171 schema:familyName Malinowska
172 schema:givenName U.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75
174 rdf:type schema:Person
175 sg:person.0611712544.89 schema:affiliation https://www.grid.ac/institutes/grid.13339.3b
176 schema:familyName Piotrowska
177 schema:givenName A. J.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611712544.89
179 rdf:type schema:Person
180 sg:person.0721645122.11 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
181 schema:familyName Klekowicz
182 schema:givenName H.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721645122.11
184 rdf:type schema:Person
185 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
186 schema:familyName Durka
187 schema:givenName P. J.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
189 rdf:type schema:Person
190 https://app.dimensions.ai/details/publication/pub.1074707900 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1074966568 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1075017586 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077294594 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1077470248 schema:CreativeWork
195 https://doi.org/10.1006/cbmr.1993.1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029545489
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0013-4694(95)00216-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005871134
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.clinph.2005.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017422472
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.cmpb.2004.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027406525
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.compbiomed.2007.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010035699
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jneumeth.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572247
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.neunet.2007.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029075779
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0013-4694(98)00052-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029001868
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0165-0270(02)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686634
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0167-8760(02)00153-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019990004
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0169-2607(99)00013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042390027
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/08037050600963040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058342381
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tbme.1986.325682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525346
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tbme.2003.809476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525872
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/1469-8986.3720163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526920
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/j.1469-8986.2003.00141.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051491846
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.3287615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604299
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1159/000026613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041548265
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1162/neco.1995.7.6.1129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037415753
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
234 schema:name Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681, Warszawa, Poland
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.13339.3b schema:alternateName Medical University of Warsaw
237 schema:name Department of Psychiatry, Medical University of Warsaw, ul. Nowowiejska 27, 00-665, Warszawa, Poland
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...